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OAW s Kernel Theorem AC\Iy
Rationale of Kernel Theorems:
“Reasonable” operators can written as “generalized” integral
operators.

@ Schwartz kernel theorem:!

A: 8(RY) — 8/'(RY) continuous < 3! kernel K € 8'(R*), s.t.
(Av, @) = (K, @), v, @ € $(RY).

@ More distribution spaces: e.g. Gelfand-Shilov spaces.?

L. Hormander. The Analysis Of Linear Partial Differential Operators. Springer New York, 1989.

2. M. Gel'fand and G. E. Shilov. Generalized functions. Vol. 2. Spaces of fundamental and generalized functions,
Translated from the 1958 Russian original [ MR0106409] by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer,
Reprint of the 1968 English translation [ MR0230128]. AMS Chelsea Publishing, Providence, RI, 2016, pp. x+261. ISBN:
978-1-4704-2659-0.
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OAW s Kernel Theorem A

e Feichtinger’s kernel theorem for modulation spaces®.*

o Advantage: Banach spaces.
e Associate a proper integral operator = Schur’s test.

@ Generalization to general coorbit spaces.’

3H. G. Feichtinger. “Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens”.
In: C. R. Acad. Sci. Paris Sér. A-B 290.17 (1980), A791-A794. 1SSN: 0151-0509.

4E. Cordero and F. Nicola. “Kernel theorems for modulation spaces”. In: Journal of Fourier Analysis and Applications
(2017). DOI: https://doi.org/10.1007/s00041-017-9573-3.

5Peter Balazs, Karlheinz Grochenig, and Michael Speckbacher. “Kernel theorems in coorbit theory”. In:
Transactions of the American Mathematical Society Series B 6 (2019), pp. 346-364.
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https://doi.org/https://doi.org/10.1007/s00041-017-9573-3

OAW iz Group Representations ARl
Setup:

@ G locally compact group
o dg left Haar measure
@ J{ separable Hilbert space
o 7: G — U(J) unitary representation
7 square-integrable: 7t is irreducible and there exist { € FH\{0} s.t.

JG (b, 7(g))[Pdg < oo

P # 0 is called admissible
There exists T densely defined s.t. Vf1,f> € 3, V1, P € dom (T):

Lm, (g1 (n(g)ba, fo)dg = (T2, T1){fi. fo).
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C")AW on Group Representations ARl

@ Generalized wavelet transform:

Vyf(g) = (f.m(ghb),  fe 3, b edom(T)

@ Assume w.lo.g. |[TY|| =1 = Vy isometry
°o Vi L*(G) — H is given by

ViF:=| F(gn(ghbdg, Fel*G)
G

o [=V;Vy

fZLVm@MM@W@, Fex
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OAW iz Coorbit Theory AC\IZ/

Rationale of Coorbit Theory:

Functions are “nice” < their generalized wavelet transform is
Ilnicell

To measure “nice” one uses weighted L’-spaces on G:
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OAW sis, Coorbit Theory A&l//

Rationale of Coorbit Theory:

Functions are “nice” < their generalized wavelet transform is
Ilnicell

To measure “nice” one uses weighted L’-spaces on G:
Let g1,92, 83 € G. We assume:

e w:G — R submultiplicative, i.e., w(g192) < w(g1)w(g2)
e m:G — R w-moderate, i.e., m(g192¢3) < w(g1)m(g2)w(g3)
@ Some further technical assumptions on w

7 integrable w.r.t. w: there exists 1\ admissible s.t.

P € Ap(G):={Pp eFH, P #£0: Vyb e LL(G)}.
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OAW sis, Coorbit Theory — Af

Test function space: H., := {f € H: Vyf € LL(G)}
Distribution space:  (3(})~ (anti-dual of })

= (-, ) extends to (1)~ x H1, and thus Vy, extends from ¥ to
(3,)
Coorbit spaces:

Con Liy(G) == {f € (3})" : Vyf € L(G)} ,

equipped with the norm ||, ;7 ¢y = Vufllr (o)

Kernel Theorems 16th June 2020 7/28



OAW sis, Coorbit Theory — Af

Test function space: H., := {f € H: Vyf € LL(G)}
Distribution space:  (3(})~ (anti-dual of })

= (-, ) extends to (1)~ x H1, and thus Vy, extends from ¥ to
(3,)
Coorbit spaces:

Con Lin(G) := {f € (3},)": Vyf € LL(G)},

equipped with the norm ||, ;7 ¢y = Vufllr (o)

@ Co. L} (G)is aBanach space @ Con L3, (G) = 3G,
o CoI2(G) =K ® Cor Ly, (G) = (3C,)"
® 3, C Cox L}y(G) C K3,
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OAW zsz  Properties on Coorbit Spaces

Proposition (Feichtinger/Grochenig)

Let { € Ay(G).

@ Vy : Cox L'(G) - LL,(G) is an isometry.

o V3 : L},(G) — Cox L%, (G) is continuous.

Hans G. Feichtinger and Karlheinz Grichenig. “Banach spaces related to integrable group representations and their

atomic decompositions, I”. In: . Funct. Anal. 86.2 (1989), pp. 307-340.
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OAW Gz Properties on Coorbit Spaces ARl

Proposition (Feichtinger/Grochenig, cont.)

e Correspondence principle: Let F € L},(G)
3f € CoxLiy(G)s.t. F=Vyf & F=Fx*Vy
@ Duality: If 1 < p < oo, then (CorLh,(G))* = Cox 1/m(G)

e Discretization: 3{g;}ics C Gand A; : Co LL(G) — Cs.t.

f=> NOmgw, with Y N(Plw(g:) < |Iflleorr1(c)

i€l i€l

7Feichtinger and Grochenig, “Banach spaces related to integrable group representations and their atomic
decompositions, I”.
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R N\
OAW seasar Tensor Products  ARI

WISSENSCHAFTEN

@ Simple tensor: \ ® ¢ formal product of two vectors P, ¢ € I
@ Homogeneity: «- (V@ ¢) = () @ =1 ® (xd), x € C
@ Tensor product:

HoH:=span(b@d: b, b € H)
completion w.r.t. the inner product

(b1 @ b1, P2 @ d2) := (W1, 2) (P2, d1) .
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R 0\
OAW seasar Tensor Products  ARI

WISSENSCHAFTEN

@ Simple tensor: \ ® ¢ formal product of two vectors P, ¢ € I
@ Homogeneity: «- (V@ ¢) = () @ =1 ® (xd), x € C
@ Tensor product:

HoH =span(b®@db: ¥, € H)
completion w.r.t. the inner product

(b1 @ b1, P2 @ d2) := (W1, 2) (P2, d1) .

Sometimes one can find: H ® H := HS(H) (Hilbert-Schmidt
operators)

@ implicitly a non-trivial kernel theorem

@ we distinguish operators and tensor products
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OAW s Tensor Representations

In principle: Gy, Ga, 711, 72, Hy, Ho, 1, W2, my, mp, wy, wo

Tensor representation: 7ty : G x G — U(H ® H)
Tip (8, h) = n(h) @ n(g),

Ty acts on a simple tensor by

o (g, 1) (0 @) = ni(h)d @ m(g)w.
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OAW iz Tensor Representations AR

In principle: Gy, Go, 71, 70, 1, Ho, W1, Wo, mq, mp, wy, wo

Tensor representation: 7ty : G x G — U(H ® H)
Te(g h) = n(h) @ n(g),
Ty acts on a simple tensor by
me(g M) (¢ @) =n(h)d @ ().
Properties:

@ Ty is a unitary representation of G x G on H ® H.
@ Ty is irreducible

In case we would treat the tensor product as a space of
Hilbert-Schmidt operators, g acts on A € HS(FH) as

Mg (g, h)A = n(h)An(g)*.
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OAW ieiezsr Tensors and Coorbit Spaces A

o letV=YpRPpeHH
Vy(fa ®f1)(g. h) = Vyfa(h) Vi fi(g).

= ¥ is admissible for 7y, if { is admissible for 7t
@ Separable weights:

° wg(g h) =w(g)- wh)
o mg(g h) :=m(g)-my(h)
o (1/w)(g h) = (w(g) - w(h))~"

where w is submultiplicative and m is w-moderate.

o Ve Ay(GxG),if P € Ay(G), ie. g is integrable = Coorbit
spaces for g are well-defined
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OAW ‘waicsar Kernel Theorems A

WISSENSCHAFTEN

A:CorLL(G) = Cox 5 (G)
A test functions” — “distributions”
Goal: associate an integral operator 2 to A

8Peter Balazs. “Matrix-representation of operators using frames”. In:
Sampling Theory in Signal and Image Processing (STSIP) 7.1 (2008), pp. 39-54. eprint:
http://arxiv.org/abs/math.FA/0510146. URL: http://arxiv.org/abs/math.FA/0510146.

9Peter Balazs and Karlheinz Grochenig. “A Guide to Localized Frames and Applications to Galerkin-like
Representations of Operators”. In: Frames and Other Bases in Abstract and Function Spaces. Ed. by Isaac Pesenson et al.
Applied and Numerical Harmonic Analysis series (ANHA). Birkhauser /Springer, 2017. URL:
https://arxiv.org/abs/1611.09692.
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QAW iweea Kernel Theorems A

A CorLyy(G) = Cor LTY, (G)
A “test functions” — “distributions”
Goal: associate an integral operator 2 to A

Formal calculations:

7= mlgroinigivdg
G

8Balazs, “Matrix-representation of operators using frames”.
9Balazs and Gréchenig, “A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators”.
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QAW iweea Kernel Theorems A

A CorLyy(G) = Cor LTY, (G)
A “test functions” — “distributions”
Goal: associate an integral operator 2 to A

Formal calculations:

Af = L {f, g ) Am(g)bdg

8Balazs, “Matrix-representation of operators using frames”.
9Balazs and Gréchenig, “A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators”.
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QAW sbasa Kernel Theorems

A:CorLL(G) = Cox 5 (G)

A test functions” — “distributions”
Goal: associate an integral operator 2 to A

Formal calculations:

Vi (AF) () = L {f. g WY (An(g)b, m(h)b)dg

8Balazs, “Matrix-representation of operators using frames”.

9Balazs and Gréchenig, “A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators”.
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QAW sbasa Kernel Theorems

A:CorLL(G) = Cox L35, (G)

A test functions” — “distributions”
Goal: associate an integral operator 2 to A

Formal calculations:

Vi (AF) () = JG<f, nlg)bYkalg, h)dg

where k, is a continuous Galerkin like representation® - of A,

ka(g h) = (Art(g)b, (h)W).

8Balazs, “Matrix-representation of operators using frames”.

9Balazs and Gréchenig, “A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators”.
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OAW eauces Kernel Theorems ARl

A:CorLL(G) = Cox L35, (G)

A test functions” — “distributions”
Goal: associate an integral operator 2 to A

Formal calculations:

VanlAF) ) = | (. mg) bk s g
where k, is a continuous Galerkin like representation® - of A,

ka(g h) = (Art(g)b, (h)W).

Define

AF(h) = JG F(g)ka(g. h)dg

VlI)A = Q[V‘Ll) & A= V:LQ[VII)
Coorbit theory allows to make these manipulations precise
8Balazs, “Matrix-representation of operators using frames”.
9Balazs and Gréchenig, “A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators”.
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OAW i Kernel Theorem

Theorem (B., Grochenig, Speckbacher)

Let 7t be an integrable representations of G

(1) K € Copg, L‘l’o/w(G x G) defines A : Con Ll (G) — Cox L‘f‘}w(G] by

(Av, @) = (K, @ ®V), v, @ € CorLL(G).
forallv, @ € CorLL(G). We have ky = VyK and

[Allop = [IKll€on, Lz, (6x6):

(ii) Kernel theorem: If A : Co LL(G) — Cor LY (G) is bounded

1/w
= 3K € Cop, L‘l"}w(G x G) unique, s.t. the above holds.

RI

v
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OAW iz, Proof Idea: ARl

Ad (i): Show that (K, ¢ ® v) is a bdd. functional for fixed v = Av

Kernel Theorems 16th June 2020 15/28



OAW sis, Proof Idea: ARl

Ad (i): Show that (K, ¢ ® v) is a bdd. functional for fixed v = Av
Ad (ii): Show that the mapping K — A is unique and surjective

@ Uniqueness:
If K # K € Conr, Lf‘}w(G x G) is another kernel, then

(K, o ®@v) = (K', @ ®V)
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OAW sis, Proof Idea: ARl

Ad (i): Show that (K, ¢ ® v) is a bdd. functional for fixed v = Av
Ad (ii): Show that the mapping K — A is unique and surjective

o Uniqueness:
If K" # K € Con, L;"}w(G x G) is another kernel, then

D MK @ @v) = ) MK, g @)
k k
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OAW eauces Proof Idea: AR

Ad (i): Show that (K, ¢ ® v) is a bdd. functional for fixed v = Av
Ad (ii): Show that the mapping K — A is unique and surjective

@ Uniqueness:

IfK' # K € Cop, L

3 /w(G x G) is another kernel, then

(K,F) = (K',F),  VF € Cor, LL(GxG) !!!

Discretization Thm.:
span of simple tensors dense in Co,, L (G x G)
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OAW eauces Proof Idea: AR

Ad (i): Show that (K, ¢ ® v) is a bdd. functional for fixed v = Av
Ad (ii): Show that the mapping K — A is unique and surjective

@ Uniqueness:
If K # K € Conr, Lf‘}w(G x G) is another kernel, then

(K,F) = (K',F),  VF € Cor, LL(GxG) !!!

Discretization Thm.:
span of simple tensors dense in Co,, L (G x G)

o Surjectivity:
IfA: CorLL(G) — Cox L15,(G), thenky € LT, (G X G)
We show: kg * VyV¥ = ku
= 3K € Cor, L79,,(G x G) by correspondence principle
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OAW ‘s Schur’s Test A

1/p
||F||Lf,;°°(c><c) = €ssSUPjeG (L IF(g,h)l”m(g.h)”dg) '

1/p
IFll gpo (G ) = €SS SUPgeG (L IF(g,h)lpm(g,h)”dh) :
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OAW s Schur’s Test ARl

Proposition (Schur’s Test)

Let%—i—%:l,ande( = [of()kr(g h)dg, with kr : G x G — C.

(i) T:LY(G) = LL(G) bdd. & kr € £ P om(G % G).
||T||L}n(c)_>ﬁ’( ||kT||LP°° L(GXG)
(i) T: Lh(G) = L2®(G) bdd. < kr € Ln;,1®m(c x G).

||T”L§,’1(G)—>L§’,,°(G) = ||kT||Lfr;i°1®m(G><G)'
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OAW eauces More Kernel Theorems A

RI

Theorem (B., Grochenig, Speckbacher)

If:—] + % =1,&A:Cor LL(G) — Co LY (G) bdd. with kernel K, then:

(i) A : Cox L},(G) = Con Liy(G) bdd. & K € Cory, £/ om(G X G).

®my

lAllop =< HK”eaﬁ® L= (G)-
"y

(ii) A : Cor L}, (G) = Cor LP(G) bdd. < K € Cor. LT (G x G).
m ® “'m

S

14llop = 1Klleo,, 7=, () -
1

®mnip

10Balazs, Groéchenig, and Speckbacher, “Kernel theorems in coorbit theory”.

Kernel Theorems 16th June 2020 18/28



OAW ‘sz Proof Sketch: ARl
\V,

Consider (i):
@ Assumptions guarantee: 3 K and VyK = ky
e Formal calculations: A = V3 AV,
o Vy: CorLl (G) = LL(G) isometry
o Vy: L},(G) = CoxLh,(G) bounded
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OAW sz Proof Sketch: AC\Iy

Consider (i):
@ Assumptions guarantee: 3 K and VyK = ky
e Formal calculations: A = V3 AV,
o Vy: CorLl (G) = LL(G) isometry
o Vy: L},(G) = CoxLh,(G) bounded
7" I K € Copy, LM% om(G X G), then A : €0 L}, (G) — Cox L'(G)

is bounded, since

1Allop < IV3pllop 141 (6)—1,0) Ve llop
<

C”kA”LZ‘fl@m(GxG) = C||K||eo,r® LZT1®M(GXG).
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OAW i Proof Sketch:

Consider (i):
@ Assumptions guarantee: 3 K and VyK = kg4
e Formal calculations: A = V{ AV,
o Vy: CorLl (G) = LL(G) isometry
° Vi :LP (G) = Co,Lh,(G) bounded
”=": Assume A : Co L} (G) = Co, L}, (G) is bounded, then

||K||GO7‘( Lz;o—ollgm(cxc) - ” VWK“LZO—ol@m(GXG)

g€eG

= sup ||A7[(g)1b||eoﬁL¢n(G)m(g)71.
geG

1/p
— sup (JG (Arc(g)b, n(h)wm(hnpdh) m(g)

< [|Allop Sgg||7t(g)1|)||€onL}n(G)m(g)_1 < CllAllop

8
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P M\
A

QAW sbasa Kernel Theorems RI
Corollary

The following conditions are equivalent:

@ A:Cor LN (G) = CorLh(G)is bounded for every 1 < p < oo.
@ A:CorLl(G) — CorLL(G)and
A Cox LP(G) — Cor LY (G) are bounded.

® K€ Cor, £1:% (G xG) N Cony L% (G % G).
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7\
A

OAW e Schematic Diagram RI
Cor L (G > Co LN (G
0 Ln(G) A bounded nLin(G)
Vy K € Cox, L0 (G xG) Vy
|7
ka € LM (G xG)
1L(G) v oo ., IP(G)

2A bounded
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OAW eauces Sufficient Conditions AR

@ So far: Correspondence between coorbit spaces of kernels and
boundedness of operators

@ Sufficient versions of Schur’s test: conditions for e.g.
regularizing operators

Theorem

If the unique kernel of A satisfies K € Con, LY (G x G), then A is
bounded from CorL35, (G) to CorLL(G).

@ Feichtinger & Jakobsen: Full characterization of operators
with kernel in Co,, L'(G x G) in the case of modulation
spaces'!

1 Mads S. ]akobsen and Hans G. Felchtmger “The inner kernel theorem for a certain Segal algebra”. 2018. URL:
https://arxiv.org/abs/1806.0630
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OAW &=’ Examples - Modulation spaces AR

@ The Weyl-Heisenberg group G = RY x R? x T is given by

27‘[1"‘[) N 27tiT’) _ (x+x/, " _|_w/’627'ti('c+'r’—x~w’)).

(x,w,e X, w e
@ Translation: Tyf (t) = f(t — x), Modulation: M f(f) = 62”i“’tf(t)
@ Projective representation: n(z) = m(x, w) =My, Ty, z = (x, w)

@ Short-time Fourier transform: Vyf(x, w) = (f, Mo, Tx )

Kernel Theorems 16th June 2020 23/28



OAW &=’ Examples - Modulation spaces AR

@ The Weyl-Heisenberg group G = RY x R? x T is given by

27‘[i"t) N 27tiT’) ’627'ti("r+'r’—x-w’)).

(x,w,e X, w e =x+x, w+w

@ Translation: Tyf (t) = f(t — x), Modulation: M f(f) = e2mwtf(t)
@ Projective representation: n(z) = m(x, w) =My, Ty, z = (x, w)
@ Short-time Fourier transform: Vyf(x, w) = (f, Mo, Tx )

@ Coorbit spaces w.r.t. to 7 are modulation spaces:

Cox LP(RY) = MP(RY)

Kernel Theorem

For every bounded operator A : M(R?) — M*®(R?), there exists a kernel
K € Cory L®(G x G), s.t. (Av, @) = (K, @ @), v, @ € M (R?).
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OAW &=’ Examples - Modulation spaces AR

@ 7y (z1,22) isjust the TF-shift M, —w,)T(x;,x,) ON L2(R%):
(21, 22)¥ = (Mw, Ty 1) @ (M, Ty W) = Mawy,— ) Ty )Y
@ Coorbit spaces for G x G w.r.t. g are modulation spaces on R*

1K lygeo ety = 1Kl @, £ ()

12Cordero and Nicola, “Kernel theorems for modulation spaces”.
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OAW &=’ Examples - Modulation spaces AR

@ 7y (z1,22) isjust the TF-shift M, —w,)T(x;,x,) ON L2(R%):
Mg (21,22)¥ = (Maw, T, 1) @ (M, Ty 0) = Mg, —cwg) Ty x0) ¥
@ Coorbit spaces for G x G w.r.t. g are modulation spaces on R*
1K lygeo ety = 1Kl @, £ ()
@ Recover Feichtinger’s kernel theorem:

For every A : MY(RY) — M*®(R?) bounded, there exists a unique kernel
K € M®(R*),s.t. (Af,g) = (K, g ®V), v, @ € MI(RY).

@ Recover kernel theorems by Cordero & Nicola!? :
Interpret the mixed-norm spaces as mixed modulation spaces

(i) A:MY(RY) - MP(RY) bdd. & K€ Cor, LP°(R¥)
(i) A: MP(R?) - M®(R?) bdd. & K € Cor, L7®(R¥)

12Cordero and Nicola, “Kernel theorems for modulation spaces”.
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o 7\
A

OAW sz Examples - Besov spaces RI

o Affine group G = R x R* given by (x,4) - (y,b) = (x +ay, ab)
e Dilation: D,f(t) =a~'/?f(t/a), Representation: 7t(x,a) = TyD,
o Continuous wavelet transform: Wy,f(x, a) := (f, 7t(x, a)})

o Co L7(G) = B_l/zﬂ/”(]R) homogeneous Besov spaces
p.p g P
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o N\
A

OAW iiezse’ Examples - Besov spaces AR

o Affine group G = R x R* given by (x,4) - (y,b) = (x +ay, ab)
e Dilation: D,f(t) = a—'/?f(t/a), Representation: 7t(x,a) = T,D,
o Continuous wavelet transform: Wy,f(x, a) := (f, 7t(x, a)})
o Co L7(G) = B; ;/ 21/ (R) homogeneous Besov spaces

Kernel Theorem

For every A : Bl/ 2(IR) — B 1/ 2( R) bounded there exists a unique
kernel K € (307I®L°°(G x G),s.t. (Av, @) = (K, p @ V),

v, E Bl/Z(IR).

@ Cony, L®(G x G) = Seo 1/2 *1/2B(1R2) Besov space of dominating
mixed smoothness!3
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o 7\
A

OAW iiezse’ Examples - Besov spaces AR

o Affine group G = R x R* given by (x,4) - (y,b) = (x +ay, ab)
e Dilation: D,f(t) = a—'/?f(t/a), Representation: 7t(x,a) = T,D,
o Continuous wavelet transform: Wy,f(x, a) := (f, 7t(x, a)})
o Co L7(G) = B; ;/ 21/ (R) homogeneous Besov spaces

Kernel Theorem

For every A : Bl/ 2(IR) — Bo 1/ 2( R) bounded there exists a unique
kernel K € S 1/2 71/2B(]R2), s.t. (Av, @) = (K, p @),
v, ¢ € BY/ 2(IR).

@ Con, L®(GxG) = S_l/2 _1/2B(IR2) Besov space of dominating
mixed smoothness!?
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o N\
A

OAW iiezse’ Examples - Besov spaces AR

o Affine group G = R x R* given by (x,4) - (y,b) = (x +ay, ab)
e Dilation: D,f(t) = a_l/zf(t/a), Representation: 7t(x,a) = TyD,
o Continuous wavelet transform: Wy,f(x, a) := (f, 7t(x, a) )

o Co L7(G) = Bp 1/2+1/p (R) homogeneous Besov spaces

Kernel Theorem

For every A : Bl/ 2(IR) — B_l/ 2( R) bounded there exists a unique
kernel K € S 1<<<)2 ~12B(R2), s.t. (Av, @) = (K, o ® V),
v, ¢ € B/7(R).

(i) A:B7(R) = B,,”"P(R) bdd & K€ Cor,LP®(GxG)
(ii) A: By " TP (R) = BolZ(R) bdd & K € Cor, L7°(G X G)
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OAW eauces Summary ARl

@ Step 1: Show the existence of kernel K for operator A
@ Step 2:

e Associate an integral operator 2 with equivalent norm to the
operator A

o Identify the integral kernel of 2 as VyK

o Use Schur’s test to get wide range of kernel theorems

@ These “finer” characterizations do not have a counterpart in
distribution theory

@ Operators on well-known spaces can be characterized

@ Operators between coorbit spaces of different groups can be
characterized
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OAW eauces Outlook AR

True for localized frames!

@ Cordero and Nicola argued that “this reveals the superiority,
in some respects, of the modulation space formalism upon
distribution theory”

@ We added a more abstract point of view and argued that the
deeper reason for this superiority lies in the theory of coorbit
spaces and in the convenience of Schur’s test for integral
operators.

@ In the future we will argue that the group structure is not
necessary.
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Thank you!

Questions? Comments?

Peter Balazs (ARI)
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