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• part I
towards an infinite dimensional setting

• part II
Fourier multipliers in a broad context, with the moral:
seemingly different problems may have hidden connections

• part III
continuous frames and time-frequency localization
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part I
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• If Ax = λx, x 6= 0, then λ is the eigenvalue and x is the eigenvector of A.
• Google PageRank attempts to return the best ranking of websites when

searching on the web. The goal of the algorithm is to find the eigenvector
of a certain Markov transition matrix which corresponds to the largest
eigenvalue (in this case λ = 1).1

1How Google works: Markov chains and eigenvalues, http://blog.kleinproject.org/?p=280
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• ”Eigenvalues quantify the importance of information along the line of
eigenvectors. Equipped with this information, we know what part of the
information can be ignored and how to compress information....
It also helps us to extract features in developing machine learning
models. Sometimes, it makes the model easier to train because of the
reduction of tangled information.”2

• The size of matrices involved in PageRank3 and machine learning
applications indicates to take into consideration appropriate counterparts
in infinite dimensional setting.

2Machine Learning and Linear Algebra – Eigenvalue and eigenvector, by J. Hui, February
20, 2019, https://medium.com/

3e.g. 30 · 109
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• Consider the system of linear equations:

1 = x1 + x2 + x3 + · · ·+ xn

1 = x2 + x3 + · · ·+ xn

1 = x3 + · · ·+ xn

. . .

. . .
1 = xn

• Its solution is (0, 0, . . . , 1).
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• Consider the infinite system of linear equations:

1 = x1 + x2 + x3 + · · ·+ xn + xn+1 + . . .
1 = x2 + x3 + · · ·+ xn + xn+1 + . . .
1 = x3 + · · ·+ xn + xn+1 + . . .

. . .

. . .
1 = xn + xn+1 + . . .
1 = xn+1 + . . .

. . .

. . .

• There is no solution at all.
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• Compact operators are a natural generalization of finite-rank operators in
an infinite-dimensional setting.

• A finite-rank operator is of a particular form:

Ax =

n∑
k=1

λk〈x, ek〉fk, x ∈ H,

for some λk ≥ 0, where {ek} and {fk} are ONB of the Hilbert spaceH.
• Remark: If n =∞ and if λk ↘ 0, when k tends to infinity, then A is a

compact operator. If, moreover
∑∞

k=1 λk <∞, then A is a trace class
compact operator. (These are not definition, but sufficient conditions.)

• Compact operators historically originated from integral operators. In
fact, Fredholm4 intended to find solutions of integral equations by
solving appropriate systems of linear equations.

4Ivar Fredholm (1866 – 1927), Swedish mathematician
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• It seems that Hilbert5 expected that it would be possible to prove
Riemann hypothesis by using Fredholm’s technique.6

• Hilbert published 6 papers in 1904–1910 ”These papers are among the
most influential papers written in the 20th century.”7

• Among other things, Hilbert introduced there calculations which include
scalar products between functions.

• In 1913 Riesz8 used the words ”Hilbert space ” to describe such
structure.

5David Hilbert (1862 – 1943), German mathematician
6cf. B. Simon, Operator Theory, A Comprehensive Course in Analysis, Part 5, AMS, 2015.
7N. L. Carothers
8Riesz Frigyes (1880 – 1956), Hungarian mathematician
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• In quantum mechanics, physical quantities (position, momentum,
energy) are represented by operators on a certain Hilbert space.

• ”Eigenfunctions (which belong the Hilbert space) of some dynamical
variable (i.e. operator acting on that space) are those states of the
physical system for which that particular dynamical variable has what is
called ”a definite value”, and the eigenvalues is the actual ”value” that
dynamical variable has for that state.”9

9R. Penrose, The Road to Reality, 2007.
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conclusion of part I

• Compact operators (acting on Hilbert space), and trace class operators in
particular, are infinite dimensional counterparts of systems of linear
equations. Some concepts from finite dimensional linear algebra (such as
scalar product, eigenvalue, eigenvector, trace) have an infinite
dimensional interpretations, and even physical meaning.

• Therefore, when considering localization operators in time-frequency
analysis, apart from continuity (boundedness), it is of interest to study
their compactness properties.

• We are ready for the definition.
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• A linear operator A from the Hilbert spaceH1 into the Hilbert spaceH2
is called compact if the image of any bounded sequence contains a
convergent subsequence.

• For any compact operator A : H1 → H2, the operator A∗A : H1 → H1 is
compact and non-negative.10 The unique operator S such that S2 = A∗A,
is also compact.

• The eigenvalues of S are called the singular values of A. The sequence of
singular values (λn) converges to zero, or consists of only finitely many
nonzero terms.

• The operator A is trace class operator if
∑

n |λn| <∞.

10A∗ : H2 → H1 is given by 〈Ax, y〉 = 〈x,A∗y〉, x ∈ H1, y ∈ H2
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part II
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• Next we mention 3 conjectures related to seemingly different problems,
but apparently intimately related.

• We begin with the Kakeya conjecture.
• In 1917, Sōichi Kakeya asked for a set of minimal area in the plane

through which we can rotate a unit length needle by 360◦.
• Independently, Besikovitch (1919) constructed sets with zero Lebesgue

measure which contains a unit line segment in every direction.
• If we require that the set contains a unit line segment which can be

rotated continuously in every direction within the set, then such set can
have arbitrary small measure, but never measure zero (Cunningham,
1971).
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• However, if Hausdorff dimension is considered instead of the Lebesgue
measure, then the Kakeya conjecture can be stated as follows.11

• If E is a Kakeya set in Rd, then the Hausdorff dimension of the set E,
dimE is equal to d.

• For d = 2 the affirmative answer is given by Davis, 1971.
• For d ≥ 3, since 1991, some answers are given by Bourgain, Wolff,

Katz, Tao, ... For example, it is proved that dimE ≥ d
2 + 1.

• ”This combinatorial problem plays a major role in the theory of
oscillatory integrals in harmonic analysis.”12

11Recall, the famous Cantor set is of the Lebegsue measure zero, but it’s Hausdorff
dimension is log3 2.

12J. Bourgain, in Mathematics: Frontiers and Perspectives, IMU, AMS, 2000
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• Let us meet an oscillatory integral.
• Let f be an absolutely integrable function. Then its Fourier transform is

given by

F(f (·))(ξ) = f̂ (ξ) =

∫
Rd

f (x) e−2πiξx dx, ξ ∈ Rd.

We may try to understand in what sense the inversion property

f (x) =

∫
Rd

f̂ (ξ) e2πiξx dξ = F−1(f̂ (·))(x), x ∈ Rd,

holds when f is a function on Rd, since f̂ (ξ) may not be integrable.
• A choice of summability method is to introduce a localizing factor m

such that m(0) = 1 and which decays sufficiently rapidly at infinity, and
observe

lim
R→∞

∫
Rd

m(
ξ

R
)f̂ (ξ) e2πiξx dξ, x ∈ Rd.
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• For example, m could be χB(0,1), characteristic function of the unit ball.

• A function m is called an Lp(Rd) Fourier multiplier if the mapping

f (x) 7→
∫
Rd

m(ξ)f̂ (ξ) e2πiξx dξ = F−1(m(·)F f (·))(x), x ∈ Rd,

is bounded on Lp(Rd), 1 < p <∞.
• Here, f ∈ Lp(Rd), 1 < p <∞, if∫

Rd
|f (x)|p dx <∞.

In particular, L2(Rd) is Hilbert space with the inner product

〈f , g〉 =

∫
Rd

f (x)g(x) dx, f , g ∈ L2(Rd).
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• If the multiplier m has enough derivatives, and is of certain polynomial
decay at infinity,

|x||α||Dαm| ≤ C 0 ≤ |α| ≤ d + 2,

then m is an Lp Fourier multiplier for all 1 < p <∞.13

• For d ≥ 2, the map

f (x) 7→
∫
|ξ|≤1

f̂ (ξ) e2πiξx dξ, x ∈ Rd,

is bounded on Lp(Rd) if and only if p = 2. (Fefferman, 1971)
A key ingredient in argument is the existence of measure-zero Kakeya
sets!

13This is a special case of the Hörmander–Mikhlin theorem.
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• An interesting case arises when the multiplier is given by
mλ(ξ) = (1− |ξ|2)λ+, λ ≥ 0. Notice that mλ(ξ/R)→ 1, as R→∞, so it
fits within the summability method.

• Consider the Bochner–Riesz means of order λ > 0:

BλR(f )(x) =

∫
Rd

mλ(
ξ

R
) f̂ (ξ) e2πiξx dξ, x ∈ Rd, R > 0.

• The Bochner–Riesz conjecture states that mλ(ξ) acts as a bounded
Fourier multiplier on Lp(Rd), p 6= 2, if and only if λ > 0 and

2d
d + 1 + 2λ

≤ p ≤ 2d
d − 1− 2λ

.

• d = 2 is proved by Carleson–Sjölin in 1972. Other proofs and
extensions: Hörmander, Cordoba, Fefferman, Bourgain, Wolff...

• The main combinatorial component in Bourgain’s approach (1991) is
based on the knowledge of Kakeya-type problems.
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• Another question concerning the Fourier transform is related to its
restriction to subsets S of Rd.

• If f ∈ L1(Rd) then f̂ is a continuous function which vanishes at infinity,
so it can be restricted to any S ⊂ Rd.

• If f ∈ L2(Rd) then f̂ ∈ L2(Rd), and there is no meaningful way to restrict
it to any set S of zero measure.

• When 1 < p < 2, we can, for instance, consider f (x) = (1 + |x1|)−1,
d ≥ 2, which belongs to Lp(Rd), but its Fourier transform is infinite on
every point on the hyperplane {ξ ∈ Rd | ξ1 = 0}.

• In 1967 Stein made the surprising discovery that when S is of measure
zero, but it contains sufficient ”curvature”, than one can indeed restrict
the Fourier transform of Lp(Rd) functions for certain p > 1.
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• The restriction problem thus can be formulated as follows: for which sets
S ⊂ Rd and which 1 ≤ p ≤ 2 can the Fourier transform of f ∈ Lp(Rd) be
meaningfully restricted?

• Classical results in that direction have played an essential role in the
Cauchy theory of dispersive PDE’s.

• The restriction conjecture in one of its forms states that

‖f̂ |S‖L1(dσ) ≤ Cp‖f‖p, for p <
2d

d + 1
,

where dσ denotes the surface measure of the unit sphere.
• ”The difficulty of the Bochner-Riesz and restriction conjectures is seen

by their connection to the Kakeya conjecture.”14

14B. Simon, Harmonic Analysis, A Comprehensive Course in Analysis, Part 3, AMS, 2015.
ARI seminar ANACRES project June 05, 2019 23 / 37



conclusion of part II

• Kakeya problem is related to combinatorial geometry, while
Bochner–Riesz conjecture is a statement about oscillatory integrals, and
restriction problems are related to the Cauchy theory of dispersive
PDE’s.

• Bochner–Riesz conjecture =⇒ Restriction conjecture =⇒ Kakeya
conjecture

• There are some implications in other directions, and any progress in one
of the fields makes an impact to the others.

• the moral: seemingly different problems may manifest interesting
connections.
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part III
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• In different contexts signal analysis it is of interest to treat the
time-frequency plane as one geometric whole (phase space) rather than
to consider tima and frequency in separate ways.
Consequently, analogues of Fourier multipliers are operators which
localize in both time and frequency in phase-space.

• Such operators were introduced by Berezin around 1970, and applied to
quantization problems in quantum mechanics.

• In signal analysis they are related to localization technique developed by
Slepian-Polak-Landau around 1960.

• Basic facts on time-frequency localization operators with references to
applications in optics and signal analysis are given in

I. Daubechies. Time-frequency localization operators: a geometric
phase space approach. IEEE Trans. Inform. Theory, 34(4):605–612,
1988.

When the symbol (multiplier) of Daubechies’ operator is an absolutely
integrable radial function, then is eigenfunctions Hermite functions, and
eigenvectors are explicitly calculated.
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• Localization operators of the form

〈LχΩ f , g〉 =

∫∫
Ω

W(f , g),

where

W(f , g)(x, ω) =

∫
f (x +

t
2

)g(x− t
2

)e−2πiωt dt, f , g ∈ L2(R),

is the (cross-)Wigner distribution were studied in

J. Ramanathan, P. Topiwala, Time-frequency localization via the
Weyl correspondence. SIAM J. Math. Anal., 24(5): 1378-1393, 1993.

For any open set Ω ⊂ [−B,B]× [−T,T] s.t. all its cross-sections in both
ξ and x directions consist of at most M intervals, eigenfunctions of LχΩ

belong to S(1)(Rd).
• Recall, f ∈ S(1)(Rd) if and only if

sup
x∈Rd
|f (x)|eh·|x| <∞ and sup

ω∈Rd
|f̂ (ω)|eh·|ω| <∞, ∀h > 0.
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• Inverse problem for a simply connected localization domain is studied in

L. D. Abreu, M. Dörfler, An inverse problem for localization
operators, Inverse Problems 28 (11), 115001, 16 pp, 2012.

If one of the eigenfunctions of Daubechies’ operator is a Hermite
function, then the domain is a disc centered at 0.

• Localization operators on a locally compact group G and Lp(G),
1 ≤ p ≤ ∞, were studied in

M. W. Wong, Wavelet transforms and localization operators,
Birkhäuser Verlag, Basel, 2002.

There one can find a product formula and trace-class properties of
localization operators.

• Since the beginning of the XXI century, localization operators in the
context of modulation spaces were studied by many authors:
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H. G. Feichtinger, K. Nowak, A first survey of Gabor multipliers, in Advances in
Gabor Analysis, Birkhäuser, 99–128, 2003.

E. Cordero, K. Gröchenig, Time-frequency analysis of localization operators, J.
Funct. Anal. 205 (1), 107-131, 2003.

Á. Bényi, K. A. Okoudjou, Bilinear pseudodifferential operators on modulation
spaces. J. Fourier Anal. Appl. 10 (3), 301-313, 2004.

Á. Bényi, K. H. Gröchenig, C. Heil, K. A. Okoudjou, Modulation spaces and a
class of bounded multilinear pseudodifferential operators. J. Operator Theory 54
(2), 387-399, 2005.

J. Toft, Continuity and Schatten properties for Toeplitz operators on modulation
spaces, in Oper. Theory Adv. Appl., 172, 313-328, 172, Birkhäuser, 2007.

E. Cordero, K. A. Okoudjou, Multilinear localization operators, J. Math. Anal.
Appl. 325 (2), 1103-1116, 2007.
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• The short-time Fourier transform (STFT) of f ∈ S(1)(Rd) w.r.t.
g ∈ S(1)(Rd) \ 0 is given by:

Vgf (x, ω) =

∫
Rd

f (t) g(t − x) e−2πiωt dt,= 〈f ,MωTxg〉,

and extends to f ∈ S(1)′(Rd) by duality.
Here T and M denote translation and modulation operators:

Txf (·) = f (· − x) and Mxf (·) = e2πix·f (·), x ∈ Rd.

• The STFT inversion formula for f , ϕ1, ϕ2 ∈ S(1)(Rd) reads as follows:

f (t) =
1

〈ϕ2, ϕ1〉

∫
R2d

Vϕ1 f (x, ω)MωTxϕ2(t) dxdω, t ∈ Rd.

• Localization operator Aϕa with symbol a ∈ S(1)′(R2d) and windows
ϕ1, ϕ2 ∈ S(1)(Rd):

Aϕa f (t) =

∫
R2d

a(x, ω)Vϕ1 f (x, ω)MωTxϕ2(t) dxdω.
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• A natural analogue of Lp(Rd) spaces in the context of the STFT are
Feichtinger’s modulation spaces.
Let φ ∈ S(1)(Rd) \ 0, s, t ∈ R and p, q ∈ [1,∞]. The modulation space
Mp,q

s,t (Rd) consists of all f ∈ (S(1))′(Rd) s. t.

‖f‖Mp,q
s,t
≡

(∫
Rd

(∫
Rd
|Vφf (x, ω)〈x〉t〈ω〉s|p dx

)q/p

dω

)1/q

<∞

(with obvious interpretation of the integrals when p =∞ or q =∞).
We use the usual abbreviations: Mp,p

0,0 = Mp, Mp,p
t,t = Mp

t , etc.
• The most important results in the context of localization operators on

modulation spaces are given in

E. Cordero, K. Gröchenig, Time-frequency analysis of localization
operators, J. Funct. Anal. 205 (1), 107-131, 2003.

• For example, among other things, they shown the following continuity
property:

‖Aϕa ‖op . ‖a‖M∞−s,0
‖ϕ1‖M1

s
‖ϕ2‖M1

s
.
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• Time-frequency localization operators, also known as the STFT
multilpiers, can be considered as a particular case of multipliers for
continuous frames introduced in

Balazs, P., Bayer, D. and Rahimi, A.: Multipliers for continuous
frames in Hilbert spaces, Journal of Physcis A: Mathematical and
Theoretical, 45, 2012.

• LetH be a complex Hilbert space and (X, µ) be a measure space with
positive measure µ. The mapping F : X → H is called a continuous
frame with respect to (X, µ), if

1 F is weakly-measurable, i.e., for all f ∈ H, x→ 〈f ,F(x)〉 is a measurable
function on X;

2 there exist constants A,B > 0 such that

A‖f‖2 ≤
∫

X
|〈f ,F(x)〉|2 dµ(x) ≤ B‖f‖2, ∀f ∈ H. (1)

The constants A and B are called continuous frame bounds.
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• Let F and G be continuous frames forH with respect to (X, µ) and
m : X → C be a measurable function. The operator Mm,F,G : H → H
weakly defined by

〈Mm,F,Gf , g〉 =

∫
X

m(x)〈f ,F(x)〉〈G(x), g〉dµ(x), f , g ∈ H,

is called continuous frame multiplier of F and G with respect to the
symbol m.
We use the following notation to be understood in weak sense as above:

Mm,F,Gf :=

∫
X

m(x)〈f ,F(x)〉G(x)dµ(x).

The operator Mm,F,G : H → H is well defined and bounded with

‖Mm,F,G‖ ≤ ‖m‖∞
√

BFBG.
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• Appropriate bilinear extension is given as follows.
• LetH be the tensor productH = H1 ⊗H2 of complex Hilbert spaces,

and (X, µ) = (X1 × X2, µ1 ⊗ µ2) be the product of measure spaces with
σ−finite positive measures µ1, µ2. Also, let F = F1 ⊗ F2 and
G = G1 ⊗ G2 be continuous frames forH with respect to (X, µ) and
m : X → C be a measurable function. The operator Mm,F,G : H → H
weakly defined by

〈Mm,F,G~f ,~g〉 = 〈Mm,F1⊗F2,G1⊗G2
~f ,~g〉

=

∫
X1

∫
X2

m(x1, x2)〈~f , (F1 ⊗ F2)(x)〉〈(G1 ⊗ G2)(x),~g〉dµ(x) (2)

for all~f ,~g ∈ H, is called continuous bilinear frame multiplier of F and G
with respect to the symbol m.
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• If F (or G) is bounded, and if m is an essentially bounded measurable
function with support of finite measure, then Mm,F,G is compact operator.

• Let F = F1 ⊗ F2 and G = G1 ⊗ G2 be norm bounded continuous frames
forH with respect to (X, µ) and let m ∈ L1(X, µ). Then Mm,F,G is a
well-defined bounded bilinear operator. Moreover, Mm,F,G is a trace
class operator.

• Finally, note that bilinear localization operators considered in

Teofanov, N., Bilinear Localization Operators on Modulation
Spaces, Journal of Function Spaces (2018) doi:
10.1155/2018/7560870

can be interpreted as bilinear continuous frame multipliers.
• More details will be available in

Balazs P., Teofanov, N., Bilinear multipliers for continuous frames,
in preparation

ARI seminar ANACRES project June 05, 2019 35 / 37



conclusion of part III

• Localization operators are phase-space analogues of localization
techniques related to Fourier multipliers. They appear in different
context such as in quantization, optics, signal analysis.

• Continuous frame multipliers offer an abstract approach to the study of
localization operators.
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Thank you for your kind attention.
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