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Abstract—Learning an accurate approximation to an unknown func-
tion from data is a fundamental problem at the heart of many key tasks
in computational science and engineering. It presents various challenges,
including: the curse of dimensionality, which renders classical approaches
poorly suited; the fact that obtaining samples is expensive; the potential
for the domain to be irregular; and the fact that the target function may
take values in an infinite-dimensional Hilbert space. A highly fruitful
way to strive to overcome these challenges is by exploiting the fact that
functions arising in such applications often admit approximately sparse
representations in a given dictionary. Accordingly, the purpose of this
work is to examine the following question: supposing multivariate function
has an approximately sparse representation, how many samples suffice to
learn such an approximation from data, and how can it be computed? We
focus on two scenarios. First, when the representing dictionary elements
are known, with the problem being solved via least squares, and second
the substantially more challenging scenario where such elements are
unknown. We address this using `1-minimization strategies. Our results
apply to scalar- and Hilbert-valued functions. We also introduce a novel
`1-minimization strategy for sparse approximation on irregular domains.

I. INTRODUCTION

Let (D,D, ρ) be a probability space, where D ⊆ Rd, and V
be a Hilbert space. We consider the problem of approximating a
function f : D → V from noisy evaluations of f at m sample points
y1, . . . , ym. Our focus is on designing sampling strategies that are
sample efficient. To this end, we assume that the yi are independent,
with yi ∼ µi for some probability measure µi on D. In what follows,
we are particularly interested in whether or not standard Monte Carlo
(MC) sampling, i.e. µi = ρ, ∀i, leads to optimal sample complexity
bounds. Given samples yi, we consider data of the form

bi = f(yi) + ni ∈ Vh, i = 1, . . . ,m.

Here Vh is a finite-dimensional discretization of V (e.g. it may be
a finite element space when f represents a solution of a parametric
PDE). We assume such a space is available in what follows.

Next, we consider a dictionary of scalar-valued functions Φ =
{φl : l ∈ I} ⊂ L2

ρ(D), which may be finite, countable or
uncountable, and we assume that f has an approximate s-sparse
representation in Φ, i.e. there exists a set S ⊆ I of size |S| ≤ s
for which f ≈ fS =

∑
l∈S clφl for cl ∈ V.

II. MAIN RESULTS

Case (i): known S. We consider a positive weight function w :
D → (0,∞) and construct the approximation f̂ to f via a Hilbert-
valued weighted least-squares fit

f̃ ∈ argmin{L((p(yi))i, (bi)i) : p ∈ PS;Vh}, (1)

where PS;V = {
∑
l∈S clφl : cl ∈ V} ⊂ L2

ρ(D;V) and
L((p(yi))i, (bi)i) = 1

m

∑m
i=1 w(yi)‖bi − p(yi)‖2V. Our main result,

stated informally for succinctness, is the following:
Theorem 2.1 (Optimal sampling; known S): There exists a choice

of measures µi and weight function w such that f is recovered

accurately and stably via (1) (with high probability), subject to the
near-optimal sample complexity bound m & s · log(s). This bound is
generally not achieved by MC sampling. Sample complexity bounds
for MC sampling can be arbitrarily bad, depending on Φ and S.

This result extends previous work [1]–[6] to the Hilbert-valued
setting. We observe that in practice the measures µi can be chosen
as discrete measures, thus making it straightforward to draw samples
from them. Note that by ‘accurately’ and ’stably’ we mean f is
recovered up to an error depending on f − fS , the noise terms ni
and f −Ph(f), where Ph(f) is the orthogonal projection onto Vh.
This latter term accounts for the discretization of the space V.

Case (ii): unknown S. We now further assume that |Φ| = n is finite
and linearly independent, and consider the `1-minimization problem

f̃ ∈ argmin{λ‖c‖`1(Vn) +
√
L((p(yi))i, (bi)i)}, (2)

where the minimization is taken over p =
∑
ι∈I cιφι ∈ PI;Vh .

This is a Hilbert-valued version of the square-root LASSO problem
[7]–[9]; the latter being particularly well suited to practical function
approximation scenarios when the noise level is unknown [9]. Ex-
tending a number of previous works [9]–[15], our main result is:

Theorem 2.2 (Towards optimal sampling; unknown S): There exists
a choice of (discrete) measures µi and weight function w such that
f is recovered accurately and stably via (2) (with high probability),
subject to the sample complexity bound

m & (b/a) · (θ2/a) · s · log(n) · log2((b/a)(θ2/a)s),

where a, b > 0 are the Riesz basis bounds for Φ and θ2 :=∫
D

maxι∈I |φι(y)|2 dρ(y). Conversely, the corresponding sample
complexity bound for MC sampling involves the larger factor Θ2 =
maxι∈I ‖φι‖2L∞

ρ (D). Furthermore, there are choices of Φ for which
θ = 1 and Θ is arbitrarily large.

III. CONCLUSION

This work strives to understand optimal sampling for function
approximation in general dictionaries; in particular, the extent to
which one can improve standard MC sampling. It leads naturally
to several new techniques, including a novel approach for function
approximation on irregular domains. See Figs. 1–2 for numerical
experiments. We remark that this approach can be significantly
generalized, both in terms of the sampling and the low-dimensional
structure. One can replace pointwise evaluations by sampling accord-
ing to random linear operators, with potentially different and infinite-
dimensional codomains. Further, one can replace the sparsity model
by a structured sparsity model, for weighted [16], [17], lower set
[14], [18] or joint sparsity. Extensions of Theorems 2.1 and 2.2 can
be established for this substantially more general problem, leading to
improved or optimal sampling strategies for other function approx-
imation problems, such as dense-in-time, sparse-in-space sampling,
gradient-augmented sampling [19]–[21] and numerous others.
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(d, k, n) = (1, 399, 400) (d, k, n) = (2, 152, 796)

(θ2,Θ2) = (2.25, 799) (θ2,Θ2) = (2.51, 561)

(d, k, n) = (8, 22, 1843) (d, k, n) = (16, 14, 4385)
(θ2,Θ2) = (1.99, 81) (θ2,Θ2) = (1.74, 45)

Fig. 1. Demonstrating the benefits of the sampling measures of Theorem 2.2.
In this example, the dictionary is an orthonormal Legendre polynomial basis
over L2

ρ(D), where D = [−1, 1]d, ρ is the uniform measure and I = IHC
k−1

is the hyperbolic cross index set. The figures show the approximation error
versus m for approximating the function f(y) = exp(−

∑d
k=1 yk/2d) for

different values of d over 10 trials, via MC sampling (‘LU’) and the sampling
measures defined in Theorem 2.2 (‘LO’). The values of the constants θ2 and
Θ2 are also displayed. It is notable that the biggest improvement arises in
lower dimensions, both theoretically (via the relative sizes of Θ and θ) and
numerically (via the approximation error).
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