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Abstract—We develop a generative model for solving inverse prob-
lems in imaging, where the unknown is generated from a multi-layer
convolutions. The method is introduced and analyzed in function space.
We prove theoretical results and show experiments for different imaging
applications with comparisons to existing methods.

I. INTRODUCTION

The following is a short version of our work [4].

We are concerned with the solution of inverse problems in imaging.
That is, given A X — Y a continuous operator between
Banach spaces and (possibly noisy) data y € Y, we want to solve
A(u) =~ y for u. For simplicity, we will restrict A to be linear. A
typical approach to overcome ill-posedness in inverse problems are
variational methods, where we consider solving

min ADy (Au) + R(u), >0,

with D, enforcing data fidelity and the regularization functional R
ensuring well-posedness and acting as a prior (e.g. the total variation).
In [5] the authors propose the deep image prior (DIP), i.e., they solve
inverse problems using a generative convolutional neural network
go(z) with input (latent variable) z and parameters 6 via computing

6 e argmin Dy (Age(z)), (N
)

where z is fixed. Afterwards the solution is obtained as u = g4(2).
Inspired by the remarkable experimental results of (DIP) we propose
a novel variational regularization method where we combine the deep
image prior with a second regularization via infimal convolution by
solving

min ADy (Au) + vR(u —v) + (1 — v)G(v). (GR)

u,v
Here, G is a so-called generative prior capturing the network ar-
chitecture. In this work, we introduce and analyze G in function
space, which allows not only for a proof of well-posedness of
the corresponding regularization approach, but also enables us to
investigate the regularity of solutions.

II. THE GENERATIVE PRIOR

For g € (1, 2], the generative prior G : L4(Q2) — [0, 0o is defined
as

Ny
Gw)= if  ullm st i) opt =3 phwdl,
p=(pt,..pt), ; n=1
0=(6",...0%) i) [0l <1
w) Z6=0.
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The latent variables p are modeled as radon measures and the filter
kernels @ as L? functions. Constraints i) and 44) in (2) ensure that v
is generated from multiple consecutive convolutions. We penalize the
radon norm of the latent variables on all layers which replaces non-
linear activation functions in our model and acts as regularization. We
bound the norm of the filter kernels in order to remove ambiguities
arising from the bilinearity of the convolution. We allow for additional
constraints on 6 via the linear and bounded operator Z (the concrete
choice of Z will depend on R). No training is needed for our method.

III. MAIN RESULTS

Theorem 3.1: (Regularity) If in the definition of G, if the number
of layers L > 2, then G(u) < oo implies u € C(Q).
Hence, our generative prior cannot generate discontinuities, which
indicates the capability of removing noise. This also means it cannot
generate jump discontinuities, therefore we combine G with a second
regularization R allowing for discontinuities (e.g. the total variation).
Moreover, in the case R = TV we choose Z6 = ([0}, dz)n
motivated by the fact, that T'V does not penalize constants.
Theorem 3.2: (Well-posedness) Under standard assumptions (see
[4]) (GR) is well-posed. That is,
1) the problem (GR) admits a solution,
2) the solution is weakly subsequentially stable up to shifts of
in the intersection of ker(A) with the invariant space of R and
3) if the data converges to the ground truth y, — y, then, with
an appropriate choice of parameters A, the solutions (Un,vn)n
converge (as in item 2) to a solution of Au = y with minimal
value of vR(u —v) + (1 — v)G(v).

IV. EXPERIMENTS

In Figures 1 to 4 we show practical results in comparison to a
custom implementation of total generalized variation regularization
(TGV)[2] and to (DIP) [6]. To reproduce the results see [3].

V. CONCLUSION

Data driven models, as is the generative prior, have shown to
be very useful for the regularization of inverse problems [5, 1].
Yet, the level of mathematical foundation is still inferior compared
to conventional variational methods. With the proposed work we
have partly overcome this issue, by introducing and investigating
a generative model in function space. Moreover, in experiments,
our method performs at least equally well compared to recent deep
learning methods (see [4]).
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Fig. 1: Inpainting from 30% known pixels. From left to right: Data,
DIP, proposed.
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Fig. 3: Denoising. From left to right: Data, TGV, proposed.
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Fig. 4: Deconvolution. From left to right: Data, TGV, proposed.
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