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Abstract—In the past few decades the problem of
reconstructing high-dimensional functions taking values
in abstract spaces from limited samples has received
increasing attention, largely due to its relevance to un-
certainty quantification (UQ) for computational science
and engineering. These UQ problems are often posed
in terms of parameterized partial differential equations
(PDE) whose solutions take values in Hilbert or Banach
spaces. Impressive results have been achieved on such
problems with deep learning (DL), i.e. machine learning
with deep neural networks (DNN). This work focuses on
approximating high-dimensional smooth functions tak-
ing values in reflexive and typically infinite-dimensional
Banach spaces. Our novel approach to this problem is
fully algorithmic, combining DL, compressed sensing
(CS), orthogonal polynomials, and finite element dis-
cretization. We present a full theoretical analysis for
DNN approximation with explicit guarantees on the
error and sample complexity, and a clear accounting
of all sources of error. We also provide numerical
experiments showing that DNNs can produce accurate
approximations on challenging Banach-valued bench-
mark problems.

I. INTRODUCTION

A large number of recent works have proposed
the use of DNNs in scientific computing and UQ
over the past several years [1], [6], [8], [12], [13].
Many of these works demonstrate empirically that
DNNs mitigate to a large degree the central challenge
of high dimensionality in these problems, i.e., the
curse of dimensionality. Parameterized PDE models
for UQ can often be expressed in terms of differential
operators in the spatial or temporal variables. The
sampling-based approach for such problems consid-
ers the recovery of a function

f : U → V, y 7→ f(y) (I.1)

with U ⊆ Rd with d ∈ N or d =∞, and V the solution
space of the PDE (a Hilbert or Banach space), from
noisy samples {(yi, di)}mi=1 with di = f(yi) + ni ∈

Vh, a discretization of the infinite-dimensional space
V. Here the discretization process may introduce
modelling errors, numerical error, or random noise
to the measurements, which we account for in the
convergence analysis.

II. MAIN RESULTS

Our main result, stated below, extends results from
[7], [10], [11] and quantifies all sources of error
involved in the approximation of Banach-valued pa-
rameterized PDE solutions with DNNs.

Theorem II.1. Let f : U → V be holomorphic w.r.t. y
in a Bernstein polyellipse containing U ⊆ Rd, d = ∞.
Then there exists (i) a class of ReLU or tanh DNNs, (ii)
a loss function (regularized `2-loss), and (iii) a choice
of regularization parameter λ depending on m only,
for which every approximate minimizer fΦ achieves an
error scaling like Eapp + m1/4(Esamp + Edisc + Eopt),
where Eapp, Esamp, Edisc, and Eopt are the approxima-
tion, sampling, discretization, and objective function
errors, respectively. Moreover the DNN fΦ has both
subexponential width and polylogarithmic depth in m.

This result asserts convergence of DNNs with ap-
proximation error Eapprox = C(m/c0L)
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subexponential size in the number of training sam-
ples m, even in the infinite-dimensional setting. Com-
paring with results for Hilbert-valued approxima-
tion, we note an increase in sample complexity over
that setting as a consequence of working in Banach
spaces. Finally, we remark that the sample complexity
and size of the network can be further reduced in the
setting where a priori information of the anisotropy
of f is given.
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Fig. 1: For a tanh 5 × 50 DNN we show (top) MSE
training error and (bottom) prediction of uΦ,h(x,y) at
fixed y after 20,000 epochs of Adam [9].

III. NUMERICAL EXPERIMENTS

Our numerical results use the testing framework
from [2] and focus on the case of recovering so-
lutions to the parametric steady-state Navier-Stokes
equations (NSE) with different input data on a chal-
lenging lid-driven cavity problem in two spatial di-
mensions. For more details see [5]. Figure 1 dis-
plays the training error in the mean-squared error
(MSE) loss between the finite element coefficients
computed by FEniCS [3] and those predicted by
a DNN architecture inspired by [4]. This DNN is
composed of multiple tanh 5 × 50 fully-connected
subnetworks, each directly approximating one of the
variables (u, τ , p) of interest, corresponding to the
solution, derivative, and pressure terms of the NSE.
We also display the predicted solution uΦ,h(x,y) at a
fixed y value, showing the DNN successfully captures
the dynamics of this challenging benchmark problem.

IV. CONCLUSION

DNNs offer great potential in accurately resolving
high-dimensional functions of interest in general ab-

stract spaces, and their use in computational science
and engineering is only increasing. Therefore it is
paramount that we understand their practical ben-
efits and limitations in various modeling contexts. In
particular, it is critical that we understand key issues
such as their approximation capabilities, sample com-
plexity, and stability and robustness properties.
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