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Abstract—We consider a recovery from ptychographic measurements
also known as the Short-Time Fourier Transform (STFT) phase retrieval.
That is the unknown object of interest has to be reconstructed from
as a set of diffraction patterns resulting from a series of localized
illuminations. In this paper we study Ptychographic Iterative Engine
(PIE), a popular iterative algorithm among practitioners, which uses the
measurements corresponding to a single illumination at the time. We show
that PIE is the stochastic gradient descent applied to the amplitude-based
squared loss and derive its sublinear convergence guarantees.

I. INTRODUCTION

Ptychography [1] is a lenseless imaging technique, which aims to
reconstruct the object of interest from a set of diffraction patterns.
For each pattern, a certain region of the specimen is illuminated with
localized light and the resulting exit wave is then captured by a
detector placed in the far-field. The applications of ptychography
include biology [2], material science [3], crystallography [4] and
many more.

For a mathematical description of the ptychographic experiment,
let us denote by x ∈ Cd the object and by w ∈ Cd the illumination
also known as window. Then, measurements are given by

yrj = |(F diag(w)S−rx)j |+ nr
j , (1)

for j ∈ [d] := {0, 1, ..., d− 1} corresponding to the j-th pixel of the
detector and r ∈ R ⊆ [d] being the illumination region identifier.
Vectors nr ∈ Rd denote the noise, the matrix F ∈ Cd×d is the
Discrete Fourier Transform matrix, diag(w) is a diagonal matrix with
entries of w on the main diagonal and S−r , r ∈ [d] is a family of
the circular shift operators such that (Srv)j = vj−rmod d for any
v ∈ Cd.

By combining the matrices Ar := F diag(w)S−r as a block
row matrix A and yr, nr as long vectors y, n, we observe that
the measurements (1) are a special case of the phase retrieval
measurements

y = |Ax|+ n.

Note that the absolute value | · | and other functions in this paper are
applied entrywise. If R = [d], the matrix A corresponds to STFT
with window w and otherwise it is a subsampled STFT matrix.

For the reconstruction from the measurements (1), we consider the
PIE algorithm [5], which starts with an initial guess z0 ∈ Cd and for
t ∈ N constructs the t-th iterate by performing the next steps.

1) Select rt ∈ R.
2) Construct an exit wave ψ = diag(w)S−rtz

t−1.
3) Compute its Fourier transform Ψ = Fψ.
4) Correct the magnitudes of Ψ as Ψ′ = diag(sgnΨ)yr

t

with
sgn(α) = α/|α| if α ̸= 0 and sgn(0) = 0.

5) Find an exit wave ψ′ corresponding to Ψ′ via ψ′ = F−1Ψ′.
6) Construct zt = zt−1 + α

∥w∥2∞
Srt diag(w)

∗[ψ′ − ψ],

where M∗ and M−1 are the conjugate transpose and the inverse
of matrix M , respectively, and ∥v∥p is the ℓp-norm of the vector
v ∈ Cd, 1 ≤ p ≤ ∞.

Originally in [5] the index rt was selected such that illuminations
corresponding to rt−1 and rt overlap. Later in [6], [7] indices rt are
looping through the set R, which is randomly shuffled every loop. In
this paper we assume that rt is selected uniformly at random from
R.

Despite the popularity of PIE and its alternations [6], [8], [9], [7],
the convergence of these algorithms have not been established yet.

II. MAIN RESULTS

Some of the algorithms for phase retrieval [10], [11], [12], [13],
[14] perform the gradient based minimization of the amplitude-based
squared loss function

L2(z;A) := ∥|Az| − y∥22 , (2)

with the generalized Wirtinger gradient defined as

∇L2(z) := A∗(Az − diag(sgnAz)y).

In the case of ptychography, the loss function (2) naturally splits into
a sum L2(z;A) =

∑
r∈R L2(z;Ar), which allows to establish an

interpretation of the PIE algorithm as stochastic gradient descent.

Theorem II.1. The iteration of PIE is given by

zt = zt−1 − α
d∥w∥2∞

∇L2(z
t−1;Art). (3)

The representation (3) allows to apply the modern theory on
convergence of stochastic gradient descent [15].

Theorem II.2. Let {zt}t≥0 be a sequence determined by PIE with
an arbitrary starting point z0 ∈ Cd and fix γ > 0. Denote by |R|
the cardinality of the set R. If the number of iterations T satisfies

T ≥ 4d2γ−4|R| ∥w∥2∞

∥∥∥∥∥∑
r∈R

|Srw|2
∥∥∥∥∥
∞

L2
2(z

0),

and the parameter α satisfies

α ≤ ∥w∥∞ |R|1/2T−1/2

∥∥∥∥∥∑
r∈R

|Srw|2
∥∥∥∥∥
−1/2

∞

,

then the gradient admits mint∈[T ] E
∥∥∇L2(z

t)
∥∥
2
≤ γ.

Furthermore, our result can be strengthened to the almost sure
convergence by allowing for α = αt based on [16], [17].

III. CONCLUSION

This work is the first step towards the understanding of PIE and
its variations. In the future, we plan to expand the analysis to the
extended PIE for blind ptychography [6].
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