On connections between Amplitude Flow and Error Reduction for phase retrieval

Oleh Melnyk
Helmholtz Center Munich,
TU Munich
oleh.melnyk@tum.de

Abstract

In this paper, we consider two iterative algorithms for the phase retrieval problem: the well-known Error Reduction method and the Amplitude Flow algorithm, which performs minimization of the amplitude-based squared loss via the gradient descent. We show that Error Reduction can be interpreted as a quasi-Newton method applied to minimize the same amplitude-based squared loss, which allows to establish its convergence properties. Moreover, we show that for a class of measurement scenarios two methods have the same computational complexity and sometimes even coincide.

I. Introduction

The problem of phaseless recovery considers the reconstruction of an unknown $x \in \mathbb{C}^{d}$ from a quadratic measurements of the form

$$
\begin{equation*}
y_{j}=\left|(A x)_{j}\right|^{2}+n_{j}, \quad j \in[m] \tag{1}
\end{equation*}
$$

with $A \in \mathbb{C}^{m \times d}, m>d$ denoting the measurement matrix, n - the noise and $[m]:=\{1, \ldots, m\}$. It has many application in the fields of crystallography [1], noncrystalline materials [2], [3], [4] and optical imaging [5].

One of the popular approaches to the recovery of x is the Error Reduction (ER) method [6], [7], [8]. It poses the phase retrieval problem as a problem of finding $A x$, which belongs to the intersection of two sets

$$
\begin{aligned}
\mathcal{M} & :=\left\{u \in \mathbb{C}^{m}:\left|u_{j}\right|^{2}=y_{j}, j \in[m]\right\}, \\
\operatorname{im}(A) & :=\left\{u \in \mathbb{C}^{m}: u=A z \text { for some } z \in \mathbb{C}^{d}\right\}
\end{aligned}
$$

Starting with a guess $z^{0} \in \mathbb{C}^{d}$, ER constructs the initial iterate $u^{0}=A z^{0}$ and then proceeds by consequently projecting u^{t} onto \mathcal{M} and $\operatorname{im}(A)$, so that $u^{t+1}=P_{\operatorname{im}(A)} P_{\mathcal{M}} u^{t}, t \geq 0$, where P denotes the projection operator. Note, that set \mathcal{M} is non-convex and, thus, convergence of the algorithm is not guaranteed theoretically. The iterations are continued until the algorithm finds a fixed point $u^{t+1}=u^{t}$ and an estimate z^{t} corresponding to the least squares solution $u^{t}=A z^{t}$ is returned. When iterations of ER are rewritten with respect to z^{t}, it grants the following updates

$$
\begin{equation*}
z^{t+1}=A^{\dagger} \operatorname{diag}\left(\frac{\sqrt{y}}{\left|A z^{t}\right|}\right) A z^{t}, \quad t \geq 0 \tag{ER}
\end{equation*}
$$

where $\operatorname{diag}(u)$ denotes diagonal matrix with vector u on main diagonal, A^{\dagger} is the Moore-Penrose inverse, and the division is performed entrywise. We note that the case $\left(A z^{t}\right)_{j}=0$ for some $j \in[m]$ is special, since there are multiple possible projections on set \mathcal{M}. In such a scenario, 0 is commonly mapped to $e^{i \varphi} \sqrt{y_{j}}$ with $\varphi \in[0,2 \pi)$ either some fixed or randomly chosen value. In this paper we map 0 to $0-$ an average value of all possible projections, which corresponds to setting the fraction $\left(A z^{t}\right)_{j} /\left|\left(A z^{t}\right)_{j}\right|$ as zero.

Another popular algorithm is Amplitude Flow (AF) [9], [10], [11], [12], which solves the phase retrieval problem by minimizing the
amplitude-based squared loss

$$
L_{2}(z):=\sum_{j=1}^{m}\left(|A z|-\sqrt{y_{j}}\right)^{2}
$$

via gradient descent. The generalized gradient of L_{2} is given by

$$
\nabla L_{2}(z)=A^{*} \operatorname{diag}\left(1-\frac{\sqrt{y}}{|A z|}\right) A z
$$

with A^{*} denoting conjugate transpose of A. Then, starting with an initial guess z^{0}, the iterates of AF are generated by

$$
\begin{equation*}
z^{t+1}=z^{t}-\mu \nabla L_{2}\left(z^{t}\right), \quad t \geq 0 \tag{AF}
\end{equation*}
$$

and algorithm terminates, once a fixed (critical) point $z^{t+1}=z^{t}$ is reached. When the learning rate μ is chosen to be the squared inverse of the spectral norm $\|A\|^{-2}$, AF has a guaranteed convergence rate of $\mathcal{O}\left(t^{-1 / 2}\right)$.

II. Main Results

Our two main results show that the two algorithms ER and AF are related and have the same sets of fixed points provided the measurement matrices are non-singular.
Theorem II.1. Let $\operatorname{rank}(A)=d$. Then, ER has convergence rate of $\mathcal{O}\left(t^{-1 / 2}\right)$.
Theorem II.2. Let $\operatorname{rank}(A)=d$. Then, $z \in \mathbb{C}^{d}$ is a fixed point of $E R$ if and only if z is the fixed point of $A F$.

At the core of our results is the following lemma.
Lemma II.3. Let $\operatorname{rank}(A)=d$. Then, iterations of $E R$ are quasiNewton iterations given by

$$
z^{t+1}=z^{t}-\left(A^{*} A\right)^{-1} \nabla L_{2}\left(z^{t}\right), \quad t \geq 0
$$

From these results it may seem that two algorithms are comparable. However, a single iteration of ER requires computing the pseudoinverse, which is considerably slower than AF. The next corollary shows, that this difference is less significant when the columns of A are orthogonal and, in fact, the two algorithms are equivalent.
Corollary II.4. Let $A^{*} A=\operatorname{diag}(v)$ for some $v \in \mathbb{R}^{d}, v_{j}>$ $0, j \in[d]$. Then, ER has the same computational complexity as $A F$. Furthermore, if $v_{j}=c, c>0$ for all $j \in[m]$, two algorithms coincide.

An important example where the conditions of Corollary II. 4 are satisfied is ptychography [13], [14], [15], [16], where A represents a discrete Short-time Fourier transform.

Acknowledgement

OM was partially supported by the Helmholtz Association within the projects Ptychography 4.0 and EDARTI.

References

[1] Z. C. Liu, R. Xu, and Y. H. Dong, "Phase retrieval in protein crystallography," Acta crystallographica. Section A, Foundations of crystallography, vol. 68, no. Pt 2, pp. 256-265, 2012.
[2] D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, "Biological imaging by soft x-ray diffraction microscopy," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. $15343-15346,2005$.
[3] P. Thibault, V. Elser, C. Jacobsen, D. Shapiro, and D. Sayre, "Reconstruction of a yeast cell from x-ray diffraction data," Acta crystallographica. Section A, Foundations of crystallography, vol. 62, no. Pt 4, pp. 248-261, 2006.
[4] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, "Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes," Annual review of physical chemistry, vol. 59, pp. 387-410, 2008.
[5] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, "Phase retrieval with application to optical imaging: A contemporary overview," IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 87-109, 2015.
[6] Gerchberg R.W. and Saxton W.O., "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik, vol. 35, p. 237, 1972.
[7] J. R. Fienup, "Phase retrieval algorithms: a comparison," Applied optics, vol. 21, no. 15, pp. 2758-2769, 1982.
[8] S. Marchesini, Y.-C. Tu, and H.-T. Wu, "Alternating projection, ptychographic imaging and phase synchronization," Applied and Computational Harmonic Analysis, vol. 41, no. 3, pp. 815-851, 2016.
[9] G. Wang, G. B. Giannakis, and J. Chen, "Solving large-scale systems of random quadratic equations via stochastic truncated amplitude flow," in 2017 25th European Signal Processing Conference (EUSIPCO), I. Staff, Ed. Piscataway: IEEE, Aug. 2017, pp. 1420-1424.
[10] G. Wang, G. B. Giannakis, and Y. C. Eldar, "Solving systems of random quadratic equations via truncated amplitude flow," IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 773-794, 2018.
[11] R. Xu, M. Soltanolkotabi, J. P. Haldar, W. Unglaub, J. Zusman, A. F. J. Levi, and R. M. Leahy, "Accelerated wirtinger flow: A fast algorithm for ptychography." [Online]. Available: https://arxiv.org/pdf/1806.05546
[12] J.-W. Liu, Z.-J. Cao, J. Liu, X.-L. Luo, W.-M. Li, N. Ito, and L.-C. Guo, "Phase retrieval via wirtinger flow algorithm and its variants," in Proceedings of 2019 International Conference on Machine Learning and Cybernetics. [Piscataway, New Jersey]: IEEE, 2019, pp. 1-9.
[13] K. Jaganathan, Y. C. Eldar, and B. Hassibi, "Stft phase retrieval: Uniqueness guarantees and recovery algorithms," IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 4, pp. 770-781, 2016.
[14] M. A. Iwen, A. Viswanathan, and Y. Wang, "Fast phase retrieval from local correlation measurements," SIAM Journal on Imaging Sciences, vol. 9, no. 4, pp. 1655-1688, 2016.
[15] M. Perlmutter, S. Merhi, A. Viswanathan, and M. Iwen, "Inverting spectrogram measurements via aliased wigner distribution deconvolution and angular synchronization," Information and Inference: A Journal of the IMA, 2020.
[16] A. Forstner, F. Krahmer, O. Melnyk, and N. Sissouno, "Well-conditioned ptychograpic imaging via lost subspace completion," Inverse Problems, vol. 36, no. 10, p. 105009, 2020.

