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Abstract—In this paper, we consider two iterative algorithms for the
phase retrieval problem: the well-known Error Reduction method and
the Amplitude Flow algorithm, which performs minimization of the
amplitude-based squared loss via the gradient descent. We show that
Error Reduction can be interpreted as a quasi-Newton method applied
to minimize the same amplitude-based squared loss, which allows to
establish its convergence properties. Moreover, we show that for a class
of measurement scenarios two methods have the same computational
complexity and sometimes even coincide.

I. INTRODUCTION

The problem of phaseless recovery considers the reconstruction of
an unknown x ∈ Cd from a quadratic measurements of the form

yj = |(Ax)j |2 + nj , j ∈ [m], (1)

with A ∈ Cm×d,m > d denoting the measurement matrix, n – the
noise and [m] := {1, . . . ,m}. It has many application in the fields of
crystallography [1], noncrystalline materials [2], [3], [4] and optical
imaging [5].

One of the popular approaches to the recovery of x is the Error
Reduction (ER) method [6], [7], [8]. It poses the phase retrieval
problem as a problem of finding Ax, which belongs to the intersection
of two sets

M := {u ∈ Cm : |uj |2 = yj , j ∈ [m]},
im(A) := {u ∈ Cm : u = Az for some z ∈ Cd}.

Starting with a guess z0 ∈ Cd, ER constructs the initial iterate
u0 = Az0 and then proceeds by consequently projecting ut onto
M and im(A), so that ut+1 = Pim(A)PMu

t, t ≥ 0, where P
denotes the projection operator. Note, that setM is non-convex and,
thus, convergence of the algorithm is not guaranteed theoretically.
The iterations are continued until the algorithm finds a fixed point
ut+1 = ut and an estimate zt corresponding to the least squares
solution ut = Azt is returned. When iterations of ER are rewritten
with respect to zt, it grants the following updates

zt+1 = A† diag

( √
y

|Azt|

)
Azt, t ≥ 0, (ER)

where diag(u) denotes diagonal matrix with vector u on main
diagonal, A† is the Moore-Penrose inverse, and the division is
performed entrywise. We note that the case (Azt)j = 0 for some
j ∈ [m] is special, since there are multiple possible projections on
set M. In such a scenario, 0 is commonly mapped to eiϕ√yj with
ϕ ∈ [0, 2π) either some fixed or randomly chosen value. In this paper
we map 0 to 0 – an average value of all possible projections, which
corresponds to setting the fraction (Azt)j/|(Azt)j | as zero.

Another popular algorithm is Amplitude Flow (AF) [9], [10], [11],
[12], which solves the phase retrieval problem by minimizing the

amplitude-based squared loss

L2(z) :=

m∑
j=1

(|Az| − √yj)2

via gradient descent. The generalized gradient of L2 is given by

∇L2(z) = A∗ diag

(
1−

√
y

|Az|

)
Az,

with A∗ denoting conjugate transpose of A. Then, starting with an
initial guess z0, the iterates of AF are generated by

zt+1 = zt − µ∇L2(z
t), t ≥ 0. (AF)

and algorithm terminates, once a fixed (critical) point zt+1 = zt is
reached. When the learning rate µ is chosen to be the squared inverse
of the spectral norm ‖A‖−2, AF has a guaranteed convergence rate
of O(t−1/2).

II. MAIN RESULTS

Our two main results show that the two algorithms ER and AF
are related and have the same sets of fixed points provided the
measurement matrices are non-singular.

Theorem II.1. Let rank(A) = d. Then, ER has convergence rate of
O(t−1/2).

Theorem II.2. Let rank(A) = d. Then, z ∈ Cd is a fixed point of
ER if and only if z is the fixed point of AF.

At the core of our results is the following lemma.

Lemma II.3. Let rank(A) = d. Then, iterations of ER are quasi-
Newton iterations given by

zt+1 = zt − (A∗A)−1∇L2(z
t), t ≥ 0.

From these results it may seem that two algorithms are comparable.
However, a single iteration of ER requires computing the pseudoin-
verse, which is considerably slower than AF. The next corollary
shows, that this difference is less significant when the columns of
A are orthogonal and, in fact, the two algorithms are equivalent.

Corollary II.4. Let A∗A = diag(v) for some v ∈ Rd, vj >
0, j ∈ [d]. Then, ER has the same computational complexity as AF.
Furthermore, if vj = c, c > 0 for all j ∈ [m], two algorithms
coincide.

An important example where the conditions of Corollary II.4 are
satisfied is ptychography [13], [14], [15], [16], where A represents a
discrete Short-time Fourier transform.
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