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Abstract—In this paper, we consider two iterative algorithms for the
phase retrieval problem: the well-known Error Reduction method and
the Amplitude Flow algorithm, which performs minimization of the
amplitude-based squared loss via the gradient descent. We show that
Error Reduction can be interpreted as a quasi-Newton method applied
to minimize the same amplitude-based squared loss, which allows to
establish its convergence properties. Moreover, we show that for a class
of measurement scenarios two methods have the same computational
complexity and sometimes even coincide.

I. INTRODUCTION

The problem of phaseless recovery considers the reconstruction of
an unknown x € C? from a quadratic measurements of the form

yj = |(Az); > + ny,  j € [m], 4

with A € C™*?¢ m > d denoting the measurement matrix, n — the
noise and [m] := {1, ..., m}. It has many application in the fields of
crystallography [1], noncrystalline materials [2], [3], [4] and optical
imaging [5].

One of the popular approaches to the recovery of z is the Error
Reduction (ER) method [6], [7], [8]. It poses the phase retrieval
problem as a problem of finding Ax, which belongs to the intersection
of two sets

M= {ueC™: |ul|* =y;, je[m]},
im(A) := {u € C™ : u = Az for some z € C"}.

Starting with a guess 2° € C? ER constructs the initial iterate
u® = A2° and then proceeds by consequently projecting u! onto
M and im(A), so that '™ = P4 Pru’,t > 0, where P
denotes the projection operator. Note, that set M is non-convex and,
thus, convergence of the algorithm is not guaranteed theoretically.
The iterations are continued until the algorithm finds a fixed point
u't! = o' and an estimate z' corresponding to the least squares
solution u’ = Az’ is returned. When iterations of ER are rewritten
with respect to z°, it grants the following updates

VY :
TA2] Az', t>0,

2 = Al diag ( (ER)
where diag(u) denotes diagonal matrix with vector w on main
diagonal, A" is the Moore-Penrose inverse, and the division is
performed entrywise. We note that the case (Az'); = 0 for some
j € [m] is special, since there are multiple possible projections on
set M. In such a scenario, 0 is commonly mapped to ew\/gTj with
¢ € [0, 27) either some fixed or randomly chosen value. In this paper
we map 0 to 0 — an average value of all possible projections, which
corresponds to setting the fraction (Az");/|(Az");| as zero.
Another popular algorithm is Amplitude Flow (AF) [9], [10], [11],
[12], which solves the phase retrieval problem by minimizing the

amplitude-based squared loss

Lo(z) = ) (|42 = ;)

j=1
via gradient descent. The generalized gradient of L is given by
VY
—-—=]A
FEV

with A* denoting conjugate transpose of A. Then, starting with an
initial guess z°, the iterates of AF are generated by

VIz(z) = A" diag (1

2T =2 — uVLe (2", t>0. (AF)

and algorithm terminates, once a fixed (critical) point z‘™! = z' is
reached. When the learning rate 4 is chosen to be the squared inverse
of the spectral norm ||A|| ™2, AF has a guaranteed convergence rate
of O(t~1/?).

II. MAIN RESULTS

Our two main results show that the two algorithms ER and AF
are related and have the same sets of fixed points provided the
measurement matrices are non-singular.

Theorem IL.1. Let rank(A) = d. Then, ER has convergence rate of
o@t=1/?).

Theorem IL.2. Let rank(A) = d. Then, z € C% is a fixed point of
ER if and only if z is the fixed point of AF.

At the core of our results is the following lemma.

Lemma IL.3. Ler rank(A) = d. Then, iterations of ER are quasi-
Newton iterations given by

2 =2t (ATA) TV L (2Y), t>0.

From these results it may seem that two algorithms are comparable.
However, a single iteration of ER requires computing the pseudoin-
verse, which is considerably slower than AF. The next corollary
shows, that this difference is less significant when the columns of
A are orthogonal and, in fact, the two algorithms are equivalent.

Corollary IL4. Ler A*A = diag(v) for some v € R% v; >
0,7 € [d]. Then, ER has the same computational complexity as AF.
Furthermore, if v; = ¢, ¢ > 0 for all 7 € [m], two algorithms
coincide.

An important example where the conditions of Corollary 1.4 are
satisfied is ptychography [13], [14], [15], [16], where A represents a
discrete Short-time Fourier transform.
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