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Abstract—Machine learning, and in particular, Deep Learning (DL),
has recently demonstrated substantial potential to outperform standard
methods in the field of compressive imaging; that is, the reconstruction of
images from highly undersampled measurements. Yet, unlike standard
methods, DL approaches generally lack theoretical guarantees on the
accuracy and stability of reconstructing images. Moreover, it has also
been well documented that certain DL approaches can be unstable
and/or exhibit poor, inconsistent or otherwise unexpected generalization.
This raises the question: under what conditions can provably accurate,
stable and efficient Deep Neural Networks (DNNs) be computed for
compressive imaging problems? In this work, inspired by recent work, we
answer this question in the affirmative in the case of subsampled Fourier
measurements. Specifically, we show the existence of efficient DNNs that
are stable and accurate for gradient-sparse images, thus complementing
and extending a recent result for Haar wavelet-sparse images. This work
helps confirm the significant potential of DL, and may shed light onto
how its practical performance can be further improved.

I. COMPRESSIVE IMAGING

Reconstructing images from highly undersampled measurements is
a key task in many medical, scientific and industrial applications, with
important examples being Magnetic Resonance Imaging (MRI), X-
Ray Computed Tomography (CT), electron microscopy and seismic
imaging, to name but a few. Typically an image reconstruction
problem is formulated as the discrete linear inverse problem: given
y = Ax + e ∈ Cm, recover x ∈ CN . Here x ∈ CN is
the unknown image, y ∈ Cm are the noisy measurements and
A ∈ Cm×N is the measurement matrix. This problem is ill-posed,
since m � N in practice. Yet over the last two decades, nonlinear
reconstructions techniques based on sparse regularization have given
rise to significant performance improvements over classical linear
reconstruction methods. Among the most popular is TV-minimization
(see, e.g., [1], [2]), wherein a reconstruction x̂ is computed by solving

min
z∈CN

‖z‖TV subject to ‖Az − y‖`2 ≤ η, (1)

where ‖z‖TV = ‖∇z‖`1 is the TV-norm. Along with wavelet-based
methods, TV minimization is a standard benchmark procedure for
compressive imaging. Further, both approaches have well-understood
theoretical performance (stability and accuracy) guarantees under
suitable conditions on A [2].

II. DEEP LEARNING FOR COMPRESSIVE IMAGING

In the last five years, new techniques for compressive imaging
based on DL have emerged [3]. Here, one uses training data, i.e.
pairs {(yi, xi)}ki=1, where yi = Axi + ei, to learn a reconstruction
map N : Cm → CN , which typically takes the form of a DNN.
Various different approaches have been introduced to do this, such as
learn-the-physics methods, denoiser methods, unravelled optimization
solvers, learned proximal maps, plug-and-play methods, and various
others. See, for example, [4], [2], [5], [6], [7], [8], [9] for overviews.

While these methods have exhibited superior performance over
standard techniques, there is increasing awareness that they can suffer

from key drawbacks. They have a tendency to be unstable to small
perturbations [10], [11], [12], [13], and to exhibit inconsistent gener-
alization behaviours, referred to as AI-generated hallucinations [13].
Notably, such behaviours are typically absent in standard methods.
Theoretical justification for why DL can lead to this behaviour has
been presented in [14].

It is therefore critical to catergorize, understand and, ultimately,
improve the robustness of DNN-based methods. One key strand of
this endeavour involves studying the question of when accurate, stable
and efficient DNNs can be computed. Recently, this question was
studied in [15], yielding both negative (uncomputability) results and
positive results, the latter showing that DNNs can match the stability
and accuracy of Haar wavelet-based sparse regularization. In this
work, we complement and extend this study by examining the case
of gradient-based sparse recovery methods such as TV-minimization.

III. MAIN RESULT

We consider Fourier imaging, in which A = m−1/2PΩF is a
subsampled Fourier matrix according to some subsampling pattern
Ω ⊆ {1, . . . , N}, |Ω| = m. Fix η ≥ 0, 2 ≤ s ≤ N , χ > 0 and
consider the class I = Iχ given by

I =
{

(x, e) ∈ CN × Cm : ‖x‖`2 ≤ 1, ‖e‖`2 ≤ η, CS(x, η) ≤ χ
}
,

where CS(x, η) :=
σs(∇x)

`1√
s

+
√

logNη. Now let

M = MΩ,χ = {y = m−1/2PΩFx+ e : (x, e) ∈ I}.

Theorem 3.1 (Stable, accurate and efficient DNNs): There is a
distribution on Ω for which the following holds, provided m &
spolylog(s,N, ε) for any 0 < ε < 1. There exists a neural network
N : Cm → CN whose maximum width is at most a constant times
N2 + m and whose depth is proportional to log(χ−1), for which,
with probability at least 1− ε,

‖x−N (y)‖`2 . χ, ∀y = Ax+ e ∈ MΩ,χ.

Observe that M is the class of noisy measurements of images that
can be recovered up to error χ via (1), i.e. stably (due to the η term)
and accurately (due to σs(∇x)`1 ) [16], [17], [18]. Hence, this result
states that a DNN can achieve the same performance; in particular,
stability and predictable generalization near the set of gradient-sparse
images. Further, this network is computationally efficient, since its
depth scales only logarithmically with χ.

The proof of this theorem is completely constructive. It employs
a novel architecture based on an unravelled NESTA solver [19]
in combination with a restart scheme [20] to provide exponential
convergence, plus a novel sampling strategy based on Bernoulli
selectors and compressed sensing analysis. It highlights the vast
potential of DL, and may shed light on how to train better DNNs
without succumbing to effects such as instabilities and AI-generated
hallucinations.
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