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Abstract

In this note, we study weaving properties of both compact tight-
frames and approximated frames. Compact tight frames are defined
as frames whose frame operator is a perturbation of constant multiple
of the identity. More precisely, the frame operator has the form S =
cl + K with K being a compact operator. We also give some results
from e-approximation in the setting of weaving frames.

1 Introduction

A sequence {f}32, in a Hilbert space H is called a frame if there exist
constants A, B > 0 such that
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The numbers A and B are called lower and upper frame bounds, respec-
tively. If we can choose A = B, the frame is called tight, and if A = B =1,
the frame is called Parseval. The sequence {f}32, is said to be a Bessel
sequence if at least the upper frame condition holds.

Let 7 = {fx}32, be a frame for H. Then, the operators T and T'x
defined by
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are known as the synthesis and analysis operators of F = {fi}32,, re-
spectively. The frame operator S : H — H, defined by

Sf=TrTsf =D {f i) fr
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is a positive, self-adjoint and invertible operator. For more information
about frames we refer the reader to [2].
Weaving frames [1] have fundamental role in this paper.

Definition 1.1. [1] A finite family of frames { f;; }J]Vil ser in a Hilbert space
H is said to be woven if there exist universal constants A and B such that

for every partition {O'j}j]\il of I, the family {fij}j]‘il,i@j is a frame for H
with bounds A and B, respectively. Each family { fij}jj\/iue% is called a

weaving.

Definition 1.2. [3] Let {fi}resr be a frame for H. Given any € > 0, a
sequence { fitrer C H is called an e-approximation of { fx}rers if
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for all finite sequences {cy}.

2 Woven e-approximations of frames

In the following we show that a frame can be woven with its e-approximation.

Theorem 2.1. Let {fi}trer be a frame for H with bounds A, B and e-
approximation F = { fi}ker such that € < VA. Then {fi}rer is woven with

{fr}rer-

Proof. Let Trje and Tz ;. be the synthesis operators of Bessel sequences
{fr}reoe and {fx}reoc, respectively. Then for every o C I and f € H, we
have
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The following theorem is another feature of a result in [1], ( Theorem
6.1) in terms of our content.

Theorem 2.2. Let {fi}rer be a frame for H with e-approzimation { fi }rer
such that ev/B (2 + \/>) 2 Then {frtreos U {fk}ke(,c is a frame for H
with lower and upper frame bounds £ and B(1 4+ ( \/> respectively.

It means { fx}rer and {fk}kel are woven.

3 Woven compact-tight frames

Definition 3.1. [4] We say that a frame is compact-tight if its frame oper-
ator S is a compact perturbation of a constant multiple of the identity, that
is, S = ¢l + K with K being a compact operator.

Theorem 3.2. Let F = {f}72, be a compact-tight frame with bounds A,
B and frame operator S. If ||(1 — )l — K||? < %, then {fx}rer is woven
with {ka}kel

Proof. we know that the frame operator S is invertible and so {Sfi}rer is
a frame. For every o C I and f € H
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Therefore, { i}, U{Sfi}rer is a frame with lower frame bound
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It can be deduced from Theorem 3.2 that if {fx}xres is a compact-tight
frame and ||(1 —¢)I — K~ < %. Then {fx}x is woven with its canonical
dual {S~1f;}.
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