Weaving properties of compact-tight and approximated frames

February 28, 2024

Abstract

In this note, we study weaving properties of both compact tightframes and approximated frames. Compact tight frames are defined as frames whose frame operator is a perturbation of constant multiple of the identity. More precisely, the frame operator has the form S = cI + K with K being a compact operator. We also give some results from ϵ -approximation in the setting of weaving frames.

1 Introduction

A sequence $\{f_k\}_{k=1}^{\infty}$ in a Hilbert space H is called a *frame* if there exist constants A, B > 0 such that

$$A\|f\|^2 \le \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \le B\|f\|^2, \quad \forall f \in H.$$

The numbers A and B are called *lower* and *upper frame bounds*, respectively. If we can choose A = B, the frame is called *tight*, and if A = B = 1, the frame is called *Parseval*. The sequence $\{f_k\}_{k=1}^{\infty}$ is said to be a *Bessel sequence* if at least the upper frame condition holds.

Let $\mathcal{F} = \{f_k\}_{k=1}^{\infty}$ be a frame for H. Then, the operators $T_{\mathcal{F}}$ and $T_{\mathcal{F}}^*$ defined by

$$T_{\mathcal{F}}: \ell^2 \to H, \quad T_{\mathcal{F}}(\{c_k\}_{k \in I}) = \sum_{k=1}^{\infty} c_k f_k,$$

and

$$T^*_{\mathcal{F}}: H \to \ell^2, \quad T^*_{\mathcal{F}}f = \{\langle f, f_k \rangle\}_{k \in I}$$

are known as the synthesis and analysis operators of $\mathcal{F} = \{f_k\}_{k=1}^{\infty}$, respectively. The frame operator $S: H \to H$, defined by

$$Sf = T_{\mathcal{F}}T_{\mathcal{F}}^*f = \sum_{k=1}^{\infty} \langle f, f_k \rangle f_k,$$

is a positive, self-adjoint and invertible operator. For more information about frames we refer the reader to [2].

Weaving frames [1] have fundamental role in this paper.

Definition 1.1. [1] A finite family of frames $\{f_{ij}\}_{j=1,i\in I}^{M}$ in a Hilbert space H is said to be woven if there exist universal constants A and B such that for every partition $\{\sigma_j\}_{j=1}^{M}$ of I, the family $\{f_{ij}\}_{j=1,i\in\sigma_j}^{M}$ is a frame for H with bounds A and B, respectively. Each family $\{f_{ij}\}_{j=1,i\in\sigma_j}^{M}$ is called a weaving.

Definition 1.2. [3] Let $\{f_k\}_{k \in I}$ be a frame for H. Given any $\epsilon > 0$, a sequence $\{\tilde{f}_k\}_{k \in I} \subset H$ is called an ϵ -approximation of $\{f_k\}_{k \in I}$ if

$$\|\sum c_k(f_k - \tilde{f}_k)\|^2 \le \epsilon \sum |c_k|^2$$

for all finite sequences $\{c_k\}$.

2 Woven ϵ -approximations of frames

In the following we show that a frame can be woven with its ϵ -approximation.

Theorem 2.1. Let $\{f_k\}_{k\in I}$ be a frame for H with bounds A, B and ϵ -approximation $\tilde{\mathcal{F}} = \{\tilde{f}_k\}_{k\in I}$ such that $\epsilon < \sqrt{A}$. Then $\{f_k\}_{k\in I}$ is woven with $\{\tilde{f}_k\}_{k\in I}$.

Proof. Let $T_{\mathcal{F}J^c}$ and $T_{\tilde{\mathcal{F}}J^c}$ be the synthesis operators of Bessel sequences $\{f_k\}_{k\in\sigma^c}$ and $\{\tilde{f}_k\}_{k\in\sigma^c}$, respectively. Then for every $\sigma\subseteq I$ and $f\in H$, we have

$$\begin{split} \left(\sum_{k\in\sigma} |\langle f, f_k \rangle|^2 + \sum_{k\in\sigma^c} |\langle f, \tilde{f}_k \rangle|^2 \right)^{\frac{1}{2}} &= \left(\sum_{k\in\sigma} |\langle f, f_k \rangle|^2 + \sum_{k\in\sigma^c} |\langle f, f_k \rangle - \langle f, f_k - \tilde{f}_k \rangle|^2 \right)^{\frac{1}{2}} \\ &\geq \left(\sum_{k\in I} |\langle f, f_k \rangle|^2 \right)^{\frac{1}{2}} - \left(\sum_{k\in\sigma^c} |\langle f, f_k - \tilde{f}_k \rangle|^2 \right)^{\frac{1}{2}} \\ &\geq \sqrt{A} ||f|| - ||T_{\mathcal{F}J^c}f - T_{\tilde{\mathcal{F}}J^c}f|| \end{split}$$

$$\geq \left(\sqrt{A} - \|T_{\mathcal{F}J^c} - T_{\tilde{\mathcal{F}}J^c}\|\right) \|f\|$$

$$\geq \left(\sqrt{A} - \epsilon\right) \|f\|$$

The following theorem is another feature of a result in [1], (Theorem 6.1) in terms of our content.

Theorem 2.2. Let $\{f_k\}_{k\in I}$ be a frame for H with ϵ -approximation $\{\tilde{f}_k\}_{k\in I}$ such that $\epsilon\sqrt{B}\left(2+\sqrt{\frac{\epsilon}{B}}\right)<\frac{A}{2}$. Then $\{f_k\}_{k\in\sigma}\cup\{\tilde{f}_k\}_{k\in\sigma^c}$ is a frame for Hwith lower and upper frame bounds $\frac{A}{2}$ and $B(1+(1+\sqrt{\frac{\epsilon}{B}})^2)$ respectively. It means $\{f_k\}_{k\in I}$ and $\{\tilde{f}_k\}_{k\in I}$ are woven.

3 Woven compact-tight frames

Definition 3.1. [4] We say that a frame is compact-tight if its frame operator S is a compact perturbation of a constant multiple of the identity, that is, S = cI + K with K being a compact operator.

Theorem 3.2. Let $\mathcal{F} = \{f_k\}_{k=1}^{\infty}$ be a compact-tight frame with bounds A, B and frame operator S. If $\|(1-c)I - K\|^2 \leq \frac{A}{B}$, then $\{f_k\}_{k \in I}$ is woven with $\{Sf_k\}_{k \in I}$.

Proof. we know that the frame operator S is invertible and so $\{Sf_k\}_{k\in I}$ is a frame. For every $\sigma \subset I$ and $f \in H$

$$\begin{split} \left(\sum_{k\in\sigma} |\langle f, f_k \rangle\rangle|^2 + |\sum_{k\in\sigma^c} |\langle f, Sf_k \rangle\rangle|^2 \right)^{\frac{1}{2}} &= \left(\sum_{k\in\sigma} |\langle f, f_k \rangle\rangle|^2 + |\sum_{k\in\sigma^c} |\langle f, (cI+K)f_k \rangle\rangle|^2 \right)^{\frac{1}{2}} \\ &\geq \left(\sum_{k\in\sigma} |\langle f, f_k \rangle\rangle|^2 + \sum_{k\in\sigma^c} |\langle f, f_k \rangle - \langle (I-(cI+K)^*f, f_k \rangle|^2 \right)^{\frac{1}{2}} \\ &\geq \left(\sum_{k\in I} |\langle f, f_k \rangle|^2 \right)^{\frac{1}{2}} - \left(\sum_{k\in\sigma^c} |\langle (1-c)I-K^*\rangle f, f_k|^2 \rangle \right)^{\frac{1}{2}} \\ &\geq \left(\sqrt{A} - \sqrt{B} \|(1-c)I-K\|\right) \|f\|. \end{split}$$

Therefore, $\{f_k\}_{k=1}^{\infty} \cup \{Sf_k\}_{k \in I}$ is a frame with lower frame bound

$$\left(\sqrt{A} - \sqrt{B} \| (1-c)I - K \| \right) > 0$$

 $\mathbf{3}$

It can be deduced from Theorem 3.2 that if $\{f_k\}_{k \in I}$ is a compact-tight frame and $||(1-c)I - K^{-1}|| \leq \frac{A}{B}$. Then $\{f_k\}_k$ is woven with its canonical dual $\{S^{-1}f_k\}$.

References

- T. Bemrose, P.G. Casazza, K. Grochenig, M.C. Lammers and R.G. Lynch, *Weaving Hilbert space frames*, OPer. Matrices **10**(4), 1093-1116(2016).
- [2] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2016.
- [3] O. Christensen and M. Hasannasab, Approximate frame representations via iterated operator systems, Studia Mathematica. 19(2020).
- [4] S. Movahed, H. Hosseini Giv and A. Ahmadi Ledari, A study of Bessel sequences and frames via perturbations of constant multiples of the identity, Khayyam J. Math. 9 (1)(2023), 102-115.