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The theorem of Kadets and Snobar [1] asserts that for any n-dimensional subspace Vn of
a normed space G, there is a linear projection P : G → Vn with ∥P∥ ≤

√
n. However, it is not

clear what information of a function f ∈ G is required to compute its projection.
We consider the case (see [2] for details), when only function evaluations of f are allowed as

information, and therefore restrict to G = L∞(D), i.e., the space of all bounded complex-valued
functions on a set D equipped with the sup-norm ∥f∥∞ := supx∈D |f(x)|.

In the talk, I will show that for any Vn ⊂ L∞(D) there are 2n points x1, . . . , x2n ∈ D and
functions φ1, . . . , φ2n such that Pf =

∑2n
i=1 f(xi)φi is a projection with ∥P∥ ≤ C

√
n, where

C > 0 is an absolute constant.
The result is based on a specific type of discretization of the uniform norm, connected

to the Marcinkiewicz–Zygmund inequalities. In particular, we get that there are 2n points

x1, . . . , x2n ∈ D such that ∥f∥∞ ≤ C
(∑2n

k=1 |f(xk)|2
)1/2

for every f ∈ Vn ⊂ L∞(D).
Further, we discuss consequences for optimal recovery and new sharp bounds for the n-th

linear sampling numbers.
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