Pointwise Multipliers for Besov Spaces with 0Winfried Sickel

Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07737 Jena, Germany

In my talk I will discuss characterizations of the space of all pointwise multipliers $M(B^s_{p,p}(\mathbb{R}^n))$ for Besov spaces $B^s_{p,p}(\mathbb{R}^n)$ with $0 and <math>s \in \mathbb{R}$.

Starting point will be a characterization of $M(B_{1,1}^0(\mathbb{R}^d))$ due to Y. Meyer in 1992. Meyer's investigations have been continued by Balazs, Gröchenig and Speckbacher in 2019. These authors have dealt with the cases $M(B_{1,1}^s(\mathbb{R}^n))$, $s \in \mathbb{R}$. Both references provide characterizations in terms of wavelet coefficients. In a first step we have extended the used arguments to the following more general situation: $M(B_{p,p}^s(\mathbb{R}^n))$, $0 , <math>s \in \mathbb{R}$. But the main progress we have obtained is the change from wavelet-type characterizations to Fourier analytic characterizations. This will be discussed in detail. Whereas the wavelet-type characterization of $M(B_{p,p}^s(\mathbb{R}^n))$, $0 , <math>s \in \mathbb{R}$ is in some sense uniform, this is not true for the Fourier analytic characterizations. To our own surprise this program requires a splitting of the parameter domain $(0, 1] \times \mathbb{R}$ into six subdomains. Here it is also interesting to notice that in three cases Besov-type spaces (smoothness spaces related to Morrey spaces) are part of the characterization.

This is joined work with Yinqin Li, Dachun Yang and Wen Yuan (Beijing Normal University).