STABLE PHASE RETRIEVAL IN FUNCTION SPACES

MITCHELL A. TAYLOR

Let (Ω, Σ, μ) be a measure space, and $1 \le p \le \infty$. A subspace $E \subseteq L_p(\mu)$ is said to do *stable* phase retrieval (SPR) if there exists a constant $C \ge 1$ such that for any $f, g \in E$ we have

(0.1)
$$\inf_{|\lambda|=1} \|f - \lambda g\| \le C \||f| - |g|\|.$$

In this case, if |f| is known, then f is uniquely determined up to an unavoidable global phase factor λ ; moreover, the phase recovery map is C-Lipschitz. Phase retrieval appears in several applied circumstances, ranging from crystallography to quantum mechanics.

In this talk, I will present some elementary examples of subspaces of $L_p(\mu)$ which do stable phase retrieval, and discuss the structure of this class of subspaces. This is based on a joint work with M. Christ and B. Pineau as well as a joint work with D. Freeman, T. Oikhberg and B. Pineau.

DEPARTMENT OF MATHEMATICS, ETH ZÜRICH *Email address:* mitchell.taylor@math.ethz.ch