8th International Conference on
Computational Harmonic Analysis

September 12-16, 2022

Ingolstadt, Germany

"Harmonic Grassmannian codes"

Fickus, Matthew

An equi-isoclinic tight fusion frame (EITFF) is a type of Grassmannian code, being a sequence of subspaces of a finite-dimensional Hilbert space of a given dimension with the property that the smallest spectral distance between any pair of them is as large as possible. EITFFs arise in compressed sensing, yielding dictionaries with minimal block coherence. Their existence remains poorly characterized. Most known EITFFs have parameters that match those of one that arose from an equiangular tight frame (ETF) in a rudimentary, direct-sum-based way. We construct new infinite families of non-"tensor-sized" EITFFs in a way that generalizes the one previously known infinite family of them as well as the celebrated equivalence between harmonic ETFs and difference sets for finite abelian groups.

« back