MMEE2024

Mathematical Models in Ecology and Evolution

July 15-18, 2024
Vienna, AUSTRIA

"Evolutionary bet-hedging in structured populations"

Sharkey, Kieran

As ecosystems evolve, species can become extinct due to fluctuations in the environment. This leads to the evolutionary adaption known as bet-hedging, where species hedge against these fluctuations to reduce their likelihood of extinction. Environmental variation can be either within or between generations. Previous work has shown that selection for bet-hedging against within-generational variation should not occur in large populations. However, this work has been limited by assumptions of well-mixed populations, whereas real populations usually have some degree of structure. Using the framework of evolutionary graph theory, we show that through adding competition structure to the population, within-generational variation can have a significant impact on the evolutionary process for any population size. This complements research using subdivided populations, which suggests that within-generational variation is important when local population sizes are small. Together, these conclusions provide evidence to support observations by some ecologists that are contrary to the widely held view that only between-generational environmental variation has an impact on natural selection.

« back