Strobl24

More on Harmonic Analysis

June 9th - 15th 2024

Strobl, AUSTRIA

"Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups"

Navneet, Navneet

The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in $L^2(G)$ satisfying the local integrability condition (LIC) and having the Calder\'on sum one, where $G$ is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we propose algorithms for constructing $N$ numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in $L^2(\mathbb{R})$ and $L^2(G)$, using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.
https://ps-mathematik.univie.ac.at/e/talks/strobl24_Navneet_2023-12_Abstract_Navneet1.pdf

« back