'22

36th Summer Topology Conference

July 18-22, 2022

University of Vienna, Department of Mathematics
Oskar-Morgenstern-Platz 1, 1090 Vienna, AUSTRIA

"Set-valued functions with Markov property and generalized inverse limits"

Črepnjak, Matevž

Recently, various approaches have been introduced to study when two generalized inverse limits are homeomorphic. One of the most common approaches is detecting properties of coordinate spaces and set-valued bonding functions that imply that the corresponding inverse limits are homeomorphic. In the talk, we present such properties of coordinate spaces and set-valued bonding functions. They generalize the properties of well-known Markov functions on intervals. First, we allow the graphs of the bonding functions in the inverse sequence to be 2-dimensional. Then, we allow the coordinate spaces in the inverse sequence to be an arbitrary continuum. In both cases, the results generalize some results of Holte, Banic, Crepnjak, Lunder, Alvin, Kelly, and Imamura. This is joint work with Iztok Banic and Teja Kac.

« back